题目内容
18.已知△ABC的顶点分别为A(-1,5),B(-2,-1),C(4,3),(1)求BC边上的中线的所在的直线方程;
(2)求BC边上的高线的所在的直线方程;
(3)求△ABC的面积.
分析 (1)BC边的中点(1,1),利用点斜式可得可得BC边上的中线的所在的直线方程.
(2)kBC=$\frac{-1-3}{-2-4}$=$\frac{2}{3}$,可得BC边上的高线的所在的直线方程为:y-5=$-\frac{3}{2}$(x+1).
(3)直线BC的方程为:y-3=$\frac{2}{3}$(x-4),化为:2x-3y+1=0.求出点A到直线BC的距离d,|BC|即可得出面积.
解答 解:(1)BC边的中点(1,1),可得BC边上的中线的所在的直线方程为:y-1=$\frac{5-1}{-1-1}$(x-1),化为:y+2x-3=0.
(2)kBC=$\frac{-1-3}{-2-4}$=$\frac{2}{3}$,可得BC边上的高线的所在的直线方程为:y-5=$-\frac{3}{2}$(x+1),化为:3x+2y-7=0.
(3)直线BC的方程为:y-3=$\frac{2}{3}$(x-4),化为:2x-3y+1=0.
点A到直线BC的距离d=$\frac{|-2-3×5+1|}{\sqrt{{2}^{2}+(-3)^{2}}}$=$\frac{16}{\sqrt{13}}$,|BC|=$\sqrt{{6}^{2}+{4}^{2}}$=2$\sqrt{13}$.
∴S△ABC=$\frac{1}{2}×\frac{16}{\sqrt{13}}$×2$\sqrt{13}$=16.
点评 本题考查了相互垂直的直线方程斜率之间的关系、中点坐标公式、点到直线的距离公式、两点之间的距离公式、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
12.已知全集U=R,集合A={x|x2>4},B={x|$\frac{x+3}{x-1}$≤0},则(∁UA)∩B等于( )
| A. | {x|-2≤x<1} | B. | {x|-3≤x<2} | C. | {x|-2≤x<2} | D. | {x|-3≤x≤2} |
9.某校高二年级共有2000人,其中男生1100人,女生900人,为调查该年级学生每周平均体育运动时间的情况,采用分成抽样的方法抽取200人进行分析,统计的数据如表(时间单位:小时).
男、女运动时间情况的调查表:
(Ⅰ)计算x,y的值,根据以上统计数据完成下面的每周平均体育运动时间与性别列联表,并判断是否有95%的把握认为“该级部学生的每周平均体育运动时间与性别有关”.
附:
(Ⅱ)在每周平均体育运动时间在8小时以上的被调查的人中,喜欢乒乓球的有6人,其中男生4人,女生2人;级部决定从这4名男省中选2人,2名女生中选1人,组成代表队参加校运动会,则男生A和女生E恰好都被选中的概率是多少?
男、女运动时间情况的调查表:
| 时间 | (0,2) | [2,4) | [4,6) | [6,8) | 8小时以上 |
| 男生人数 | 10 | 25 | 35 | 30 | x |
| 女生人数 | 15 | 30 | 25 | y | 5 |
| 男生 | 女生 | 总计 | |
| 平均时间不超过6小时 | |||
| 平均时间超过6小时 | |||
| 总计 |
| K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$ | P(K2≥k) | 0.10 | 0.05 | 0.010 | 0.005 |
| k | 2.706 | 3.841 | 6.635 | 7.789 |
9.
当今信息时代,众多中小学生也配上了手机.某机构为研究经常使用手机是否对学习成绩有影响,在某校高三年级50名理科生第人的10次数学考成绩中随机抽取一次成绩,用茎叶图表示如图:
(Ⅰ)根据茎叶图中的数据完成下面的2×2列联表,并判断是否有95%的把握认为经常使用手机对学习成绩有影响?
(Ⅱ)从50人中,选取一名很少使用手机的同学(记为甲)和一名经常使用手机的同学(记为乙)解一道函数题,甲、乙独立解决此题的概率分别为P1,P2,P2=0.4,若P1-P2≥0.3,则此二人适合为学习上互帮互助的“对子”,记X为两人中解决此题的人数,若E(X)=1.12,问两人是否适合结为“对子”?
参考公式及数据:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d
(Ⅰ)根据茎叶图中的数据完成下面的2×2列联表,并判断是否有95%的把握认为经常使用手机对学习成绩有影响?
| 及格(60及60以上) | 不及格 | 合计 | |
| 很少使用手机 | 20 | 7 | 27 |
| 经常使用手机 | 10 | 13 | 23 |
| 合计 | 30 | 20 | 50 |
参考公式及数据:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d
| P(K2≥k0) | 0.10 | 0.05 | 0.025 |
| k0 | 2.706 | 3.841 | 5.024 |
5.春节期间和谐小区从初一至初八连续8天举办大型文艺汇演,居民甲随机选择其中的连续3天观看演出,那么他在初一至初四期间连续3天看演出的概率为( )
| A. | $\frac{1}{12}$ | B. | $\frac{1}{6}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{3}$ |