题目内容

(1)已知函数f(x)=|x-2|+|2x+1|,若不等式|2m+3|+|m-3|≥|m|•f(x)对任意m∈R且m≠0恒成立,求x的取值范围.
(2)对于x∈R,不等式|x-1|+|x-2|≥a2+b2+c2恒成立,试求a+2b+3c的最大值.
考点:绝对值不等式的解法
专题:不等式的解法及应用
分析:(1)依题意,得g(x)≤
|2m+3|+|m-3|
|m|
对任意m∈R且m≠0恒成立,利用绝对值三角不等式易求|2m+3|+|m-3|≥|3m|,于是可得g(x)≤3,解不等式:|x-2|+|2x+1|≤3即可;
(2)利用绝对值三角不等式易求|x-1|+|x-2|=|x-1|+|2-x|≥|x-1+2-x|=1,于是得a2+b2+c2≤1,利用柯西不等式(a+2b+3c)2≤(12+22+32)( a2+b2+c2)≤14,即可得到答案.
解答: 解:(1)不等式|2m+3|+|m-3|≥|m|•g(x)对任意m∈R且m≠0恒成立转化为g(x)≤
|2m+3|+|m-3|
|m|
对任意m∈R且m≠0恒成立.…(2分)
因为|2m+3|+|m-3|≥|3m|
|2m+3|+|m-3|
|m|
≥3
所以g(x)≤3…(4分)
所以解不等式:|x-2|+|2x+1|≤3
x<-
1
2
2-x-(2x+1)≤3
,或
-
1
2
≤x<2
2-x+(2x+1)≤3
,或
x≥2
x-2+(2x+1)≤3
…(6分)
x∈[-
2
3
,0]
…(7分)
(2)|x-1|+|x-2|=|x-1|+|2-x|≥|x-1+2-x|=1,…(9分)
当且仅当(x-1)(2-x)≥0取等号,故a2+b2+c2≤1.…(10分)
由柯西不等式(a+2b+3c)2≤(12+22+32)( a2+b2+c2)≤14.…(12分)
由  
a
1
=
b
2
=
c
3
a2+b2+c2≤1
b=2a,c=3a
a2
1
14

即取a=
14
14
,b=
14
7
c=
3
14
14
时等号成立.
故(a+2b+3)max=
14
.…(14分)
点评:本题考查绝对值三角不等式与柯西不等式的应用,突出考查等价转化思想与综合运算求解能力,属于难题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网