题目内容
已知a1=0,an+1=
an+
,n∈N*,求an的通项公式.
| n+1 |
| n |
| 1 |
| n |
考点:数列递推式
专题:点列、递归数列与数学归纳法
分析:把数列递推式两边同时乘以
,得到
-
=
,然后利用累加法求解.
| 1 |
| n+1 |
| an+1 |
| n+1 |
| an |
| n |
| 1 |
| n(n+1) |
解答:
解:由an+1=
an+
,得
=
+
,即
-
=
.
则
-
=
,
-
=
,
-
=
,
…
-
=
(n≥2).
累加得:
-
=
+
+…+
,
∵a1=0,
∴an=n(1-
+
-
+…+
-
)=n-1.
∴an=n-1.
| n+1 |
| n |
| 1 |
| n |
| an+1 |
| n+1 |
| an |
| n |
| 1 |
| n(n+1) |
| an+1 |
| n+1 |
| an |
| n |
| 1 |
| n(n+1) |
则
| a2 |
| 2 |
| a1 |
| 1 |
| 1 |
| 1×2 |
| a3 |
| 3 |
| a2 |
| 2 |
| 1 |
| 2×3 |
| a4 |
| 4 |
| a3 |
| 3 |
| 1 |
| 3×4 |
…
| an |
| n |
| an-1 |
| n-1 |
| 1 |
| (n-1)n |
累加得:
| an |
| n |
| a1 |
| 1 |
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| (n-1)n |
∵a1=0,
∴an=n(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n-1 |
| 1 |
| n |
∴an=n-1.
点评:本题考查了数列递推式,训练了利用累加法求数列的通项公式,考查了裂项相消法求数列的和,是中档题.
练习册系列答案
相关题目
| A、1 | ||
B、
| ||
| C、11 | ||
| D、12 |