题目内容

1.设坐标平面上全部向量集合为A,已知由A到A的映射f由f(x)=x-2(x•$\overrightarrow{a}$)$\overrightarrow{a}$确定,其中x∈A,$\overrightarrow{a}$=(cosθ,sinθ),θ∈R.
(1)当θ的取值范围变化时,f[f(x)]是否变化?试说明你的理由;
(2)若|$\overrightarrow{m}$|=$\sqrt{5}$,|$\overrightarrow{n}$|=$\frac{\sqrt{5}}{2}$,f[f($\overrightarrow{m}$+2$\overrightarrow{n}$)]与f(f(2$\overrightarrow{m}$-$\overrightarrow{n}$)]垂直,求$\overrightarrow{m}$与$\overrightarrow{n}$的夹角.

分析 (1)将f(f(x))进行化简,看结果是否含有θ;
(2)利用第一问结论脱函数符号进行计算.

解答 解:(1)f(f(x))=x-2(x•$\overrightarrow{a}$)$\overrightarrow{a}$-2[(x-2(x•$\overrightarrow{a}$)$\overrightarrow{a}$)$•\overrightarrow{a}$]$\overrightarrow{a}$=x-2(x•$\overrightarrow{a}$)$\overrightarrow{a}$-2[x$•\overrightarrow{a}$-2(x$•\overrightarrow{a}$)]$\overrightarrow{a}$=x-2(x•$\overrightarrow{a}$)$\overrightarrow{a}$+2(x$•\overrightarrow{a}$)$\overrightarrow{a}$=x,
∴当θ的取值范围变化时,f(f(x))不发生变化.
(2)∵f[f($\overrightarrow{m}$+2$\overrightarrow{n}$)]=$\overrightarrow{m}+2\overrightarrow{n}$,f(f(2$\overrightarrow{m}$-$\overrightarrow{n}$)]=2$\overrightarrow{m}-\overrightarrow{n}$,∴$\overrightarrow{m}+2\overrightarrow{n}$⊥2$\overrightarrow{m}-\overrightarrow{n}$,
即($\overrightarrow{m}+2\overrightarrow{n}$)•(2$\overrightarrow{m}-\overrightarrow{n}$)=0,∴2$\overrightarrow{m}$2-3$\overrightarrow{m}•\overrightarrow{n}$-2$\overrightarrow{n}$2=0,解得$\overrightarrow{m}•\overrightarrow{n}$=$\frac{5}{2}$,
设$\overrightarrow{m},\overrightarrow{n}$夹角为θ,则cosθ=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=1.∴$\overrightarrow{m}$与$\overrightarrow{n}$的夹角为$\frac{π}{2}$.

点评 本题考查了平面向量的运算化简及数量积运算,注意|$\overrightarrow{a}$|=1是关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网