ÌâÄ¿ÄÚÈÝ
1£®ÒÔÖ±½Ç×ø±êϵµÄÔµãOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖᣬÇÒÁ½¸ö×ø±êϵȡÏàͬµÄµ¥Î»³¤¶È£¬ÒÑÖªÖ±ÏßIµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=1+t\\ y=1+\sqrt{3}t\end{array}\right.$£¨tΪ²ÎÊý£©£¬Ô²CµÄ¼«×ø±ê·½³ÌΪ¦Ñ=2£¬µãP¹ØÓÚ¼«µã¶Ô³ÆµÄµãP'QUOTE p?µÄ¼«×ø±êΪ$£¨\sqrt{2}£¬\frac{5¦Ð}{4}£©$£¨1£©Ð´³öÔ²CµÄÖ±½Ç×ø±ê·½³Ì¼°µãPµÄ¼«×ø±ê£»£¨2£©ÉèÖ±ÏßIÓëÔ²CÏཻÓÚÁ½µãA¡¢B£¬ÇóµãPµ½A¡¢BÁ½µãµÄ¾àÀëÖ®»ý£®
·ÖÎö £¨1£©ÀûÓü«×ø±êÓëÖ±½Ç×ø±êµÄ»¥»¯·½·¨Ð´³öÔ²CµÄÖ±½Ç×ø±ê·½³Ì£»ÀûÓõãP¹ØÓÚ¼«µã¶Ô³ÆµÄµãP'µÄ¼«×ø±êΪ$£¨\sqrt{2}£¬\frac{5¦Ð}{4}£©$£¬µÃµ½µãPµÄ¼«×ø±ê£»
£¨2£©ÉèÖ±ÏßIÓëÔ²CÏཻÓÚÁ½µãA¡¢B£¬½«$\left\{\begin{array}{l}x=1+t\\ y=1+\sqrt{3}t\end{array}\right.$´úÈëx2+y2=4£¬µÃ£º$|{t_1}{t_2}|=\frac{1}{2}$£¬¼´¿ÉÇóµãPµ½A¡¢BÁ½µãµÄ¾àÀëÖ®»ý£®
½â´ð ½â£º£¨1£©Ô²CµÄ¼«×ø±ê·½³ÌΪ¦Ñ=2£¬Ö±½Ç×ø±ê·½³ÌΪx2+y2=4£»
µãP¹ØÓÚ¼«µã¶Ô³ÆµÄµãP'µÄ¼«×ø±êΪ$£¨\sqrt{2}£¬\frac{5¦Ð}{4}£©$£¬ÔòP£¨$\sqrt{2}£¬\frac{¦Ð}{4}$£©£»
£¨2£©µãP»¯ÎªÖ±½Ç×ø±êΪP£¨1£¬1£©
½«$\left\{\begin{array}{l}x=1+t\\ y=1+\sqrt{3}t\end{array}\right.$´úÈëx2+y2=4£¬µÃ£º$|{t_1}{t_2}|=\frac{1}{2}$£¬
ËùÒÔ£¬µãPµ½A¡¢BÁ½µãµÄ¾àÀëÖ®»ý$\frac{1}{2}$£®
µãÆÀ ±¾Ì⿼²é¼«×ø±êÓëÖ±½Ç×ø±êµÄ»¥»¯£¬¿¼²é²ÎÊý·½³ÌµÄÔËÓ㬿¼²é²ÎÊýµÄ¼¸ºÎÒâÒ壬ÊôÓÚÖеµÌ⣮
| A£® | ?x0∉∁RQ£¬x03¡ÊQ | B£® | ?x0¡Ê∁RQ£¬x03¡ÊQ | C£® | ?x∉∁RQ£¬x3¡ÊQ | D£® | ?x¡Ê∁RQ£¬x3∉Q |
| A£® | 7 | B£® | 8 | C£® | 9 | D£® | 10 |
| A£® | [$\sqrt{7}$-1£¬$\sqrt{7}$+1] | B£® | £¨$\sqrt{7}$-1£¬$\sqrt{7}$+1£© | C£® | [1£¬2] | D£® | £¨1£¬2£© |