题目内容

9.在等差数列{an}中,Sn为它的前n项和,若a1>0,S16>0,S17<0,则当Sn最大时,n的值为(  )
A.7B.8C.9D.10

分析 根据所给的等差数列的S16>0且S17<0,根据等差数列的前n项和公式,看出第9项小于0,第8项和第9项的和大于0,得到第8项大于0,这样前8项的和最大.

解答 解:∵等差数列{an}中,S16>0且S17<0,
即S16=$\frac{16{(a}_{1}+{a}_{16})}{2}=8({a}_{8}+{a}_{9})>0$,
S17=$\frac{17({a}_{1}+{a}_{17})}{2}$=17a9<0,
∴a8+a9>0,a9<0,
∴a8>0,
∴数列的前8项和最大.
故答案为:8.

点评 本题考查等差数列的性质和前n项和,以及等差数列的性质,解题的关键是熟练运用等差数列的性质得出已知数列的项的正负.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网