题目内容
5.设变量x,y满足约束条件$\left\{\begin{array}{l}{x+y-2≥0}\\{3x-2y-6≤0}\\{y≥1}\end{array}\right.$,则目标函数z=x+3y的最小值为( )| A. | 2 | B. | 3 | C. | 4 | D. | $\frac{17}{3}$ |
分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.
解答 解:由约束条件$\left\{\begin{array}{l}{x+y-2≥0}\\{3x-2y-6≤0}\\{y≥1}\end{array}\right.$作出可行域如图,![]()
联立$\left\{\begin{array}{l}{y=1}\\{x+y-2=0}\end{array}\right.$,解得A(1,1),
化目标函数z=x+3y为y=$-\frac{x}{3}+\frac{z}{3}$,
由图可知,当直线y=$-\frac{x}{3}+\frac{z}{3}$过A时,直线y=$-\frac{x}{3}+\frac{z}{3}$在y轴上的截距最小,z有最小值为4.
故选:C.
点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.
练习册系列答案
相关题目
15.已知{an}是首项为1的等比数列,Sn是{an}的前n项和,且9S3=S6,则数列{anan+1}的前2017项和为( )
| A. | 22017-1 | B. | 22017-2 | C. | $\frac{1}{3}({{4^{2017}}-1})$ | D. | $\frac{2}{3}({{4^{2017}}-1})$ |
10.已知集合A={x|x≤3},B={x|x2>4},则A∩B=( )
| A. | {x|-2<x<2} | B. | {x|x<-2或x>2} | C. | {x|x<-2或2<x≤3} | D. | {x|x<-2或2<x<3} |