题目内容
数列{an},2Sn=an+1+1-2n+1,n∈N+且a1,a2+5,a3为等差数列
(1)求a1,an;
(2)求证一切正整数n,有
+
+…+
<
.
(1)求a1,an;
(2)求证一切正整数n,有
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| 3 |
| 2 |
考点:数列的求和
专题:等差数列与等比数列
分析:(1)由2Sn=an+1+1-2n+1,n∈N+,取n=1,2,可得2a1=a2-3,2(a1+a2)=a3-7.由a1,a2+5,a3为等差数列,可得2(a2+5)=a1+a3.联立解得a1=1.
当n≥2时,2Sn-1=an+1-2n,k可得2an=2Sn-2Sn-1,an+1+2n+1=3(an+2n),再利用等比数列的通项公式即可得出.
(2)当n≥4时,
=
<
,利用“放缩法”、等比数列的前n项和公式即可得出.
当n≥2时,2Sn-1=an+1-2n,k可得2an=2Sn-2Sn-1,an+1+2n+1=3(an+2n),再利用等比数列的通项公式即可得出.
(2)当n≥4时,
| 1 |
| an |
| 1 |
| 3n-2n |
| 1 |
| 3×2n |
解答:
(1)解:∵2Sn=an+1+1-2n+1,n∈N+,
取n=1,2,可得2a1=a2-3,2(a1+a2)=a3-7.
∵a1,a2+5,a3为等差数列,
∴2(a2+5)=a1+a3.
联立
,解得
.
当n≥2时,2Sn-1=an+1-2n,
∴2an=2Sn-2Sn-1=an+1+1-2n+1-(an+1-2n),
化为an+1=3an+2n,
变形为an+1+2n+1=3(an+2n),
∴数列{an}是等比数列,首项为1,公比为3.
∴an+2n=3n,
∴an=3n-2n.
(2)证明:∵当n≥4时,
=
<
,
∴
+
+…+
=1+
+
+
<1+
+
+
<
.
∴
+
+…+
<
.
取n=1,2,可得2a1=a2-3,2(a1+a2)=a3-7.
∵a1,a2+5,a3为等差数列,
∴2(a2+5)=a1+a3.
联立
|
|
当n≥2时,2Sn-1=an+1-2n,
∴2an=2Sn-2Sn-1=an+1+1-2n+1-(an+1-2n),
化为an+1=3an+2n,
变形为an+1+2n+1=3(an+2n),
∴数列{an}是等比数列,首项为1,公比为3.
∴an+2n=3n,
∴an=3n-2n.
(2)证明:∵当n≥4时,
| 1 |
| an |
| 1 |
| 3n-2n |
| 1 |
| 3×2n |
∴
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| 1 |
| 5 |
| 1 |
| 19 |
| ||||||
1-
|
| 1 |
| 5 |
| 1 |
| 19 |
| 1 |
| 24 |
| 3 |
| 2 |
∴
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| 3 |
| 2 |
点评:本题考查了等差数列与等比数列的通项公式及其前n项和公式、递推式的应用、“放缩法”,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目