题目内容
11.设f(θ)=$\frac{{2{{cos}^3}θ+{{sin}^2}(2π-θ)+sin(\frac{π}{2}+θ)-3}}{{2+2{{cos}^2}(π+θ)+cos(-θ)}}$.(1)化简 f(θ)
(2)求f($\frac{π}{3}$)的值.
分析 (1)直接利用同角三角函数的基本关系式化简求值;
(2)把$θ=\frac{π}{3}$代入(1)的化简结果求得答案.
解答 解:(1)$f(θ)=\frac{{2{{cos}^3}θ+{{sin}^2}θ+cosθ-3}}{{2+2{{cos}^2}θ+cosθ}}=\frac{{2{{cos}^3}θ+1-{{cos}^2}θ+cosθ-3}}{{2+2{{cos}^2}θ+cosθ}}$
=$\frac{{2{{cos}^3}θ-2-({{cos}^2}θ-cosθ)}}{{2+2{{cos}^2}θ+cosθ}}=\frac{{2({{cos}^3}θ-1)-cosθ(cosθ-1)}}{{2+2{{cos}^2}θ+cosθ}}$
=$\frac{{2(cosθ-1)({{cos}^2}θ+cosθ+1)-cosθ(cosθ-1)}}{{2+2{{cos}^2}θ+cosθ}}$
=$\frac{{(cosθ-1)(2{{cos}^2}θ+cosθ+2)}}{{2+2{{cos}^2}θ+cosθ}}=cosθ-1$;
(2)$f(\frac{π}{3})=cos\frac{π}{3}-1=-\frac{1}{2}$.
点评 本题考查三角函数的化简求值,考查同角三角函数基本关系式的应用,是基础的计算题.
练习册系列答案
相关题目
1.已知角α、β的顶点与坐标原点重合,始边与x轴的非负半轴重合,点P(1,$\sqrt{3}$)、Q(3,-4)分别在角α、β的终边上,则sin(α-β)的值为( )
| A. | $\frac{3\sqrt{3}-4}{10}$ | B. | $\frac{3\sqrt{3}+4}{10}$ | C. | $\frac{3+4\sqrt{3}}{10}$ | D. | $\frac{3-4\sqrt{3}}{10}$ |
6.下列关系式正确的是( )
| A. | $\overrightarrow{AB}$+$\overrightarrow{BA}$=0 | B. | $\overrightarrow a$•$\overrightarrow b$是一个向量 | C. | $\overrightarrow{AB}$-$\overrightarrow{AC}$=$\overrightarrow{BC}$ | D. | 0•$\overrightarrow{AB}$=$\overrightarrow 0$ |
16.已知函数f(x)=x3-tx2+3x在区间[1,3]上单调递减,则实数t的取值范围是( )
| A. | (-∞,3] | B. | (-∞,5] | C. | [3,+∞) | D. | [5,+∞) |
1.a,b是任意实数,且a>b,则下列结论正确的是( )
| A. | 3-a<3-b | B. | $\frac{b}{a}$<1 | C. | lg(a-b)>lg$\frac{1}{a-b}$ | D. | a2>b2 |