题目内容

18.在△ABC中,角A,B,C的对边分别为a,b,c,且2ccosB=2a+b,若△ABC的面积为S=$\frac{{\sqrt{3}}}{12}$c,则ab的最小值为(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{6}$D.3

分析 由正弦定理将2ccosB=2a+b,转化成2sinC•cosB=2sin A+sinB,由三角形内角和定理,将sin A=sin(B+C),利用两角和的正弦公式展开,化简求得,
sinC的值,由余弦定理、三角形的面积公式及基本不等式关系,求得ab的最小值.

解答 解:由正弦定理,有$\frac{a}{sinA}$=$\frac{b}{sinB}$=$\frac{c}{sinC}$=2R,又2c•cosB=2a+b,得
2sinC•cosB=2sin A+sinB,
由A+B+C=π,得sin A=sin(B+C),
则2sinC•cosB=2sin(B+C)+sinB,即2sinB•cosC+sinB=0,
又0<B<π,sinB>0,得cosC=-$\frac{1}{2}$,
因为0<C<π,得C=$\frac{2π}{3}$,
则△ABC的面积为S=$\frac{1}{2}$ab sinC=$\frac{\sqrt{3}}{4}$ab,即c=3ab,
由余弦定理,得c2=a2+b2-2ab cosC,化简,得a2+b2+ab=9a2b2
∵a2+b2≥2ab,当仅当a=b时取等号,
∴2ab+ab≤9a2b2,即ab≥$\frac{1}{3}$,故ab的最小值是$\frac{1}{3}$.
故答案选:B.

点评 本题考查正余弦定理、三角形内角和定理及基本不等式相结合,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网