题目内容

已知数列{an},a1=a,a2=p(p为常数且p>0),Sn为数列{an}的前n项和,且Sn=
n(an-a1)
2

(Ⅰ)求a的值;
(Ⅱ)试判断数列{an}是不是等差数列?若是,求其通项公式;若不是,请说是理由.
(Ⅲ)若记Pn=
Sn+2
Sn+1
+
Sn+1
Sn+2
(n∈N*),求证:P1+P2+…+Pn<2n+3.
考点:数列的求和,等差关系的确定
专题:综合题,等差数列与等比数列
分析:(Ⅰ)由a1=S1可求a;
(Ⅱ)由(Ⅰ)可得Sn=
nan
2
,则Sn+1=
n+1
2
an+1
,两式相减得(n-1)an+1=nan,利用累乘法可求得an,由an可得结论;
(Ⅲ)由(Ⅱ)可得Pn=
Sn+2
Sn+1
+
Sn+1
Sn+2
=
n+2
n
+
n
n+2
=2+
2
n
-
2
n+2
,由裂项相消法可求得P1+P2+…+Pn,于是可得结论;
解答: 解:(Ⅰ)依题意a1=a,又a1=S1=
1•(a1-a1)
2
=0,
∴a=0;
(Ⅱ)由(Ⅰ)知a1=0,
Sn=
nan
2
,则Sn+1=
n+1
2
an+1
,两式相减得(n-1)an+1=nan
故有an=
an
an-1
an-1
an-2
a3
a2
a2
=(n-1)p,n≥2,
又a1=0也满足上式,∴an=(n-1)p,n∈N+
故{an}为等差数列,其公差为p.
(Ⅲ)由题意Sn=
n(n-1)p
2

∴Pn=
Sn+2
Sn+1
+
Sn+1
Sn+2
=
n+2
n
+
n
n+2
=2+
2
n
-
2
n+2

∴P1+P2+…+Pn=(2+
2
1
-
2
3
)+(2+
2
2
-
1
2
)+…+(2+
2
n
-
2
n+2

=2n+3-
2
n+1
-
2
n+2
<2n+3.
点评:该题考查等差关系的确定、数列求和等知识,裂项相消法、累乘法是解决数列问题的基本方法,要熟练掌握.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网