题目内容
已知数列{an},a1=a,a2=p(p为常数且p>0),Sn为数列{an}的前n项和,且Sn=
.
(Ⅰ)求a的值;
(Ⅱ)试判断数列{an}是不是等差数列?若是,求其通项公式;若不是,请说是理由.
(Ⅲ)若记Pn=
+
(n∈N*),求证:P1+P2+…+Pn<2n+3.
| n(an-a1) |
| 2 |
(Ⅰ)求a的值;
(Ⅱ)试判断数列{an}是不是等差数列?若是,求其通项公式;若不是,请说是理由.
(Ⅲ)若记Pn=
| Sn+2 |
| Sn+1 |
| Sn+1 |
| Sn+2 |
考点:数列的求和,等差关系的确定
专题:综合题,等差数列与等比数列
分析:(Ⅰ)由a1=S1可求a;
(Ⅱ)由(Ⅰ)可得Sn=
,则Sn+1=
an+1,两式相减得(n-1)an+1=nan,利用累乘法可求得an,由an可得结论;
(Ⅲ)由(Ⅱ)可得Pn=
+
=
+
=2+
-
,由裂项相消法可求得P1+P2+…+Pn,于是可得结论;
(Ⅱ)由(Ⅰ)可得Sn=
| nan |
| 2 |
| n+1 |
| 2 |
(Ⅲ)由(Ⅱ)可得Pn=
| Sn+2 |
| Sn+1 |
| Sn+1 |
| Sn+2 |
| n+2 |
| n |
| n |
| n+2 |
| 2 |
| n |
| 2 |
| n+2 |
解答:
解:(Ⅰ)依题意a1=a,又a1=S1=
=0,
∴a=0;
(Ⅱ)由(Ⅰ)知a1=0,
∴Sn=
,则Sn+1=
an+1,两式相减得(n-1)an+1=nan,
故有an=
•
…
•a2=(n-1)p,n≥2,
又a1=0也满足上式,∴an=(n-1)p,n∈N+,
故{an}为等差数列,其公差为p.
(Ⅲ)由题意Sn=
,
∴Pn=
+
=
+
=2+
-
,
∴P1+P2+…+Pn=(2+
-
)+(2+
-
)+…+(2+
-
)
=2n+3-
-
<2n+3.
| 1•(a1-a1) |
| 2 |
∴a=0;
(Ⅱ)由(Ⅰ)知a1=0,
∴Sn=
| nan |
| 2 |
| n+1 |
| 2 |
故有an=
| an |
| an-1 |
| an-1 |
| an-2 |
| a3 |
| a2 |
又a1=0也满足上式,∴an=(n-1)p,n∈N+,
故{an}为等差数列,其公差为p.
(Ⅲ)由题意Sn=
| n(n-1)p |
| 2 |
∴Pn=
| Sn+2 |
| Sn+1 |
| Sn+1 |
| Sn+2 |
| n+2 |
| n |
| n |
| n+2 |
| 2 |
| n |
| 2 |
| n+2 |
∴P1+P2+…+Pn=(2+
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
| 2 |
| 1 |
| 2 |
| 2 |
| n |
| 2 |
| n+2 |
=2n+3-
| 2 |
| n+1 |
| 2 |
| n+2 |
点评:该题考查等差关系的确定、数列求和等知识,裂项相消法、累乘法是解决数列问题的基本方法,要熟练掌握.
练习册系列答案
相关题目
设全集为U,B∩∁UA=B,则A∩B为( )
| A、∅ | B、A |
| C、B | D、∁UB |
已知点A(1,3),B(4,-1),则下面与向量
垂直的单位向量是( )
| AB |
A、(
| ||||
B、(
| ||||
C、(
| ||||
D、(-
|