题目内容
巳知等差数列{an}中,a4=14,前10项和S10=185.
(1)求an;
(2)若数列{an}满足:bn+3n=an+3×2n,求数列{bn}的前n项和Gn.
(1)求an;
(2)若数列{an}满足:bn+3n=an+3×2n,求数列{bn}的前n项和Gn.
考点:数列的求和,等差数列的性质
专题:等差数列与等比数列
分析:(1)由已知条件利用等差数列通项公式和前n项和公式求出a1=5,d=3,由此能求出an=3n+2.
(2)由已知条件得bn=3×2n+2,由此利用分组求和法能求出数列{bn}的前n项和Gn.
(2)由已知条件得bn=3×2n+2,由此利用分组求和法能求出数列{bn}的前n项和Gn.
解答:
解:(1)∵等差数列{an}中,a4=14,前10项和S10=185,
∴
,
解得a1=5,d=3,
∴an=5+(n-1)×3=3n+2.
(2)∵bn+3n=an+3×2n=3n+2+3×2n,
∴bn=3×2n+2,
∴Gn=3(2+22+23+…+2n)+2n
=3×
+2n
=6(2n-1)+2n
=3•2n+1+2n-6.
∴
|
解得a1=5,d=3,
∴an=5+(n-1)×3=3n+2.
(2)∵bn+3n=an+3×2n=3n+2+3×2n,
∴bn=3×2n+2,
∴Gn=3(2+22+23+…+2n)+2n
=3×
| 2(1-2n) |
| 1-2 |
=6(2n-1)+2n
=3•2n+1+2n-6.
点评:本题考查数列的通项公式的求法,考查数列的前n项和的求法,解题时要认真审题,注意分组求和法的合理运用.
练习册系列答案
相关题目