ÌâÄ¿ÄÚÈÝ
9£®ÒÑÖªÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=1+tcos¦Á\\ y=tsin¦Á\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÒÔ×ø±êÔµãOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=2£®£¨¢ñ£©Ö¤Ã÷£º²»ÂÛtΪºÎÖµ£¬Ö±ÏßlÓëÇúÏßCºãÓÐÁ½¸ö¹«¹²µã£»
£¨¢ò£©ÒÔ¦ÁΪ²ÎÊý£¬ÇóÖ±ÏßlÓëÇúÏßCÏཻËùµÃÏÒABµÄÖеã¹ì¼£µÄ²ÎÊý·½³Ì£¬²¢Åжϸù켣µÄÇúÏßÀàÐÍ£®
·ÖÎö £¨¢ñ£©ÓÉÇúÏßCµÄ¼«×ø±ê·½³ÌÇó³öÇúÏßCµÄÖ±½Ç×ø±ê·½³ÌΪx2+y2=4£¬½«$\left\{\begin{array}{l}{x=1+tcos¦Á}\\{y=tsin¦Á}\end{array}\right.$´úÈëx2+y2=4£¬µÃt2+2tcos¦Á-3=0£¬ÀûÓøùµÄÅбðʽÄÜÖ¤Ã÷²»ÂÛtΪºÎÖµ£¬Ö±ÏßlÓëÇúÏßCºãÓÐÁ½¸ö¹«¹²µã£®
£¨¢ò£©ÉèÖ±ÏßlÓëÇúÏß½»µãA¡¢B¶ÔÓ¦µÄ²ÎÊý·Ö±ðΪt1£¬t2£¬ÏÒABÖеãP¶ÔÓ¦²ÎÊýΪt0£¬ÓÉÖеã×ø±ê¹«Ê½Çó³ö${t}_{0}=\frac{{t}_{1}+{t}_{2}}{2}$=-cos¦Á£¬´úÈë$\left\{\begin{array}{l}{x=tcos¦Á}\\{y=tsin¦Á}\end{array}\right.$ÖУ¬Äܵõ½ÏÒABµÄÖеãµÄ¹ì¼£·½³Ì£¬ÓÉ´ËÄÜÇó³ö½á¹û£®
½â´ð Ö¤Ã÷£º£¨¢ñ£©¡ßÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=2£¬¡àÇúÏßCµÄÖ±½Ç×ø±ê·½³ÌΪx2+y2=4£¬
½«$\left\{\begin{array}{l}{x=1+tcos¦Á}\\{y=tsin¦Á}\end{array}\right.$´úÈëx2+y2=4£¬µÃt2+2tcos¦Á-3=0£¬£¨*£©
ÓÉ¡÷=£¨2cos¦Á£©2-4¡Á£¨-3£©£¾0£¬Öª·½³Ì£¨*£©ºãÓÐÁ½¸ö²»µÈʵ¸ù£¬
¹Ê²»ÂÛtΪºÎÖµ£¬Ö±ÏßlÓëÇúÏßCºãÓÐÁ½¸ö¹«¹²µã£®
½â£º£¨¢ò£©ÉèÖ±ÏßlÓëÇúÏß½»µãA¡¢B¶ÔÓ¦µÄ²ÎÊý·Ö±ðΪt1£¬t2£¬ÏÒABÖеãP¶ÔÓ¦²ÎÊýΪt0£¬
ÓÉ£¨*£©Öª${t}_{0}=\frac{{t}_{1}+{t}_{2}}{2}$=-cos¦Á£¬
´úÈë$\left\{\begin{array}{l}{x=tcos¦Á}\\{y=tsin¦Á}\end{array}\right.$ÖУ¬ÕûÀí£¬µÃÏÒABµÄÖеãµÄ¹ì¼£·½³ÌΪ$\left\{\begin{array}{l}{x=1-co{s}^{2}¦Á}\\{y=-sin¦Ácos¦Á}\end{array}\right.$£¬
¼´$\left\{\begin{array}{l}{x=\frac{1-cos2¦Á}{2}}\\{y=-\frac{1}{2}sin2¦Á}\end{array}\right.$£¨¦ÁΪ²ÎÊý£©£¬¸ÃÇúÏßΪԲ£®
µãÆÀ ±¾Ì⿼²éÖ±ÏßÓëÇúÏߺãÓÐÁ½¸ö¹«¹²µãµÄÖ¤Ã÷£¬¿¼²éÏÒµÄÖеã¹ì¼£µÄ²ÎÊý·½³ÌµÄÇ󷨣¬¿¼²é¼«×ø±ê·½³Ì¡¢Ö±½Ç×ø±ê·½³Ì¡¢²ÎÊý·½³ÌµÄ»¥»¯µÈ»ù´¡ÖªÊ¶£¬¿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦£¬¿¼²é»¯¹éÓëת»¯Ë¼Ïë¡¢º¯ÊýÓë·½³Ì˼Ï룬ÊÇÖеµÌ⣮
| x | 3 | 4 | 5 | 6 | 7 |
| y | 4.0 | 2.5 | -0.5 | 0.5 | -2.0 |
| A£® | 1.4 | B£® | -1.4 | C£® | 1.2 | D£® | -1.2 |
| A£® | ¼ÈÓм«´óÖµÓÖÓм«Ð¡Öµ | B£® | Óм«´óÖµÎÞ¼«Ð¡Öµ | ||
| C£® | ¼ÈÎÞ¼«´óÖµÓÖÎÞ¼«Ð¡Öµ | D£® | Óм«Ð¡ÖµÎÞ¼«´óÖµ |
| A£® | ¦Ñ=1 | B£® | ¦Ñ=cos ¦È | C£® | ¦Ñ=2cos ¦È | D£® | ¦Ñ=2sin ¦È |
| µÚÒ»´Î | µÚ¶þ´Î | µÚÈý´Î | µÚËÄ´Î | µÚÎå´Î | |
| ²Î»áÈËÊýx£¨ÍòÈË£© | 11 | 9 | 8 | 10 | 12 |
| Ô²ÄÁÏt£¨´ü£© | 28 | 23 | 20 | 25 | 29 |
£¨¢ò£©ÒÑÖª¹ºÂòÔ²ÄÁϵķÑÓÃC£¨Ôª£©ÓëÊýÁ¿t£¨´ü£©µÄ¹ØÏµÎª$C=\left\{\begin{array}{l}300t+20£¬£¨{0£¼t£¼35£¬t¡ÊN}£©\\ 290t£¬£¨{t¡Ý35£¬t¡ÊN}£©\end{array}\right.$ͶÈëʹÓõÄÿ´üÔ²ÄÁÏÏàÓ¦µÄÏúÊÛÊÕÈëΪ600Ôª£¬¶àÓàµÄÔ²ÄÁÏÖ»ÄÜÎÞ³¥·µ»¹£®Èô²ÍÌüÔ²ÄÁÏÏÖÇ¡ºÃÓÃÍ꣬¾ÝϤ±¾´Î½»Ò×»á´óÔ¼ÓÐ14ÍòÈ˲μӣ¬¸ù¾Ý£¨¢ñ£©ÖÐÇó³öµÄÏßÐԻع鷽³Ì£¬Ô¤²â²ÍÌüÓ¦¹ºÂò¶àÉÙ´üÔ²ÄÁÏ£¬²ÅÄÜ»ñµÃ×î´óÀûÈó£¬×î´óÀûÈóÊǶàÉÙ£¿£¨×¢£ºÀûÈóL=ÏúÊÛÊÕÈë-Ô²ÄÁÏ·ÑÓã©£®
£¨²Î¿¼¹«Ê½£º$\hat b=\frac{{\sum_{i=1}^n{£¨{{x_i}-\overline x}£©£¨{{y_i}-\overline y}£©}}}{{\sum_{i=1}^n{{{£¨{{x_i}-\overline x}£©}^2}}}}$=$\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$£¬$\hat a=\overline y-\hat b\overline x$£©