题目内容

7.已知四棱锥P-ABCD如图(1),它的三视图如图(2)所示,其中PA⊥平面ABCD,△PBC为正三角形.

(1)求证:AC⊥平面PAB;
(2)求点A到平面PBC的距离.

分析 (1)过点A作AG⊥BC于G,则AC2+AB2=BC2,即AC⊥AB,由于PA⊥平面ABCD,AC?平面ABCD,有PA⊥AC,从而可证AC⊥平面PAB.
(2)分别求出VC-PAB,VA-PBC的值,从而可解得h的值.

解答 (1)证明:由三视图可知,PA⊥平面ABCD,
BC=2AD=2CD=2,四边形ABCD为直角梯形.
过点A作AG⊥BC于G,则AG=CD=1,GC=AD=1.
∴AC=$\sqrt{A{D}^{2}+C{D}^{2}}$=$\sqrt{2}$,AB=$\sqrt{A{G}^{2}+B{G}^{2}}$=$\sqrt{2}$,
∴AC2+AB2=BC2,故AC⊥AB.
∵PA⊥平面ABCD,AC?平面ABCD,
∴PA⊥AC.
∵PA∩AB=A,∴AC⊥平面PAB.
(2)解:∵△PBC为正三角形,∴PB=BC=2.
在Rt△PAB中,PA=$\sqrt{P{B}^{2}-A{B}^{2}}$=$\sqrt{2}$.
∴VC-PAB=$\frac{1}{3}$S△PAB•AC=$\frac{1}{3}×\frac{1}{2}×\sqrt{2}×\sqrt{2}×\sqrt{2}$=$\frac{\sqrt{2}}{3}$,
设点A到平面PBC的距离为h,则
VA-PBC=$\frac{1}{3}$S△PBC•h=$\frac{1}{3}×\frac{\sqrt{3}}{4}×{2}^{2}h$=$\frac{\sqrt{3}}{3}$h.
∵VC-PAB=VA-PBC
∴h=$\frac{\sqrt{6}}{3}$.

点评 本题主要考查了直线与平面垂直的判定,简单空间图形的三视图,属于基本知识的考查.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网