题目内容

已知函数f(x)=a(x-1)2+x-1,g(x)=lnx.
(Ⅰ)若a=1,求F(x)=g(x)-f(x)在(0,+∞)上的最小值;
(Ⅱ)证明:对任意的正整数n,不等式2+
3
4
+
4
9
+…+
n+1
n
>ln(n+1)都成立;
(Ⅲ)是否存在实数a(a>0),使得方程
2g(x)
x
=f′(x+1)-(4a-1)在区间(
1
e
,e)内有且只有两个不相等的实数根?若存在,请求出a的取值范围;若不存在,请说明理由.
考点:利用导数求闭区间上函数的最值,利用导数研究函数的单调性
专题:计算题,证明题,存在型,函数的性质及应用,导数的综合应用
分析:(Ⅰ)求出a=1时的F(x),并求导数,求出单调区间,判断极值也是最值;
(Ⅱ)由(Ⅰ)知lnx≤x2-x,令x=
i+1
i
>1,得到ln(i+1)-lni<
i+1
i2
,由累加法即可得证;
(Ⅲ)假设存在实数a(a>0),将方程
2g(x)
x
=f′(x+1)-(4a-1)整理得ax2+(1-2a)x-lnx=0,
设H(x)=ax2+(1-2a)x-lnx,由已知可转化为H(x)在(
1
e
,e)内有且只有两个零点,求出导数,得到单调区间,再由
H(
1
e
)>0
H(1)<0
H(e)>0
解出即可判断.
解答: (Ⅰ)解:a=1时,f(x)=x2-x,
F(x)=lnx-x2+x,F′(x)=-
(2x+1)(x-1)
x
,由F′(x)=0得x1=-
1
2
,x2=1,
∵x∈(0,+∞),
∴x∈(0,1)时,F(x)递减,x∈(1,+∞)时,F(x)递增,
则x=1为极小值点,也为最小值点,
故F(x)min=F(1)=0.
(Ⅱ)证明:由(Ⅰ)知lnx≤x2-x,令x=
i+1
i
>1,
ln
i+1
i
<(
i+1
i
2-
i+1
i
=
i+1
i2

即ln(i+1)-lni<
i+1
i2

n
i=1
[ln(i+1)-lni]<2+
3
4
+
4
9
+…+
n+1
n2

即有不等式2+
3
4
+
4
9
+…+
n+1
n
>ln(n+1)恒成立;
(Ⅲ)解:假设存在实数a(a>0),使得方程
2g(x)
x
=f′(x+1)-(4a-1)在区间(
1
e
,e)内有且只有两个不相等的实数根.
将方程
2g(x)
x
=f′(x+1)-(4a-1)整理得ax2+(1-2a)x-lnx=0,
设H(x)=ax2+(1-2a)x-lnx,由已知可转化为H(x)在(
1
e
,e)内有且只有两个零点,
所以H′(x)=2ax+1-2a-
1
x
=
(2ax+1)(x-1)
x

令H′(x)=0,a>0,解得x1=1,x2=-
1
2a
(舍去),
当x∈(0,1),H′(x)<0,H(x)单调递减,x∈(1,+∞),H(x)单调递增.
故H(x)在(
1
e
,e)内有且只有两个零点,只需
H(
1
e
)>0
H(1)<0
H(e)>0
a
e2
+
1-2a
e
+1>0
a+1-2a<0
ae2+(1-2a)e-1>0

a<
e2+e
2e-1
a>1
a>
1-e
e2-2e
解得1<a<
e2+e
2e-1
,即存在a>0,且a的取值范围是(1,
e2+e
2e-1
).
点评:本题考查导数的综合运用:求单调区间,求极值和最值,考查不等式的证明方法,以及存在性问题的解法,同时考查方程根的问题转化为函数的零点问题,属于综合题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网