题目内容

3.已知数列{an}满足${a_1}=\frac{1}{k}$,k≥2,k∈N*,[an]表示不超过an的最大整数(如[1.6]=1),记bn=[an],数列{bn}的前n项和为Tn
①若数列{an}是公差为1的等差数列,则T4=6;
②若数列{an}是公比为k+1的等比数列,则Tn=$\frac{1}{{k}^{2}}$[(1+k)n-nk-1].

分析 ①根据数列{an}是公差为1的等差数列,写出an的通项公式,求出bn,计算它的前4项和T4
②根据数列{an}是公比为k+1的等比数列,写出通项公式an,计算数列{bn}的前n项和Tn

解答 解:①∵数列{an}满足${a_1}=\frac{1}{k}$,k≥2,k∈N*
[an]表示不超过an的最大整数bn=[an],数列{bn}的前n项和为Tn
数列{an}是公差为1的等差数列,
∴${a}_{n}=\frac{1}{k}+(n-1)×1$=n+$\frac{1}{k}-1$,
bn=[an]=n-1,
∴T4=b1+b2+b3+b4=0+1+2+3=6.
②∵数列{an}是公比为k+1的等比数列,
a1=$\frac{1}{k}$,k≥2,
∴an=$\frac{1}{k}$•(k+1)n-1
=$\frac{1}{k}$•(kn-1+${C}_{n-1}^{1}$•kn-2+${C}_{n-1}^{2}$•kn-3+…+${C}_{n-1}^{k-1}$•k+${C}_{n-1}^{n-1}$),且bn=[an],
∴数列{bn}的前n项和为:
Tn=0+1+(k+2)+(k2+3k+3)+…+(kn-2+${C}_{n-1}^{1}$•kn-3+${C}_{n-1}^{2}$•kn-4+…+${C}_{n-1}^{k-1}$)
=(1+2+3+…+n-1)+(k+${C}_{3}^{2}$k+${C}_{4}^{2}$k+…+${C}_{n-1}^{2}$k)+(k2+${C}_{4}^{3}$k2+${C}_{5}^{3}$k2+…+${C}_{n-1}^{3}$k2)+…+kn-2
=$\frac{n(n-1)}{2}$+${C}_{n}^{3}$k+${C}_{n}^{4}$k2+…+${C}_{n}^{n}$kn-2
=${C}_{n}^{2}$+${C}_{n}^{3}$k+${C}_{n}^{4}$k2+…+${C}_{n}^{n}$kn-2
=$\frac{1}{{k}^{2}}$(${C}_{n}^{2}$k2+${C}_{n}^{3}$k3+${C}_{n}^{4}$k4+…+${C}_{n}^{n}$kn
=$\frac{1}{{k}^{2}}$[(1+k)n-nk-1].
故答案为:①6,②$\frac{1}{{k}^{2}}$[(1+k)n-nk-1].

点评 本题考查了等差与等比数列的应用问题,也考查了推理与计算能力,是难题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网