题目内容

6.已知双曲线C:$\frac{x^2}{a}$-$\frac{y^2}{4}$=1(a>0)的离心率为$\frac{\sqrt{13}}{3}$,右焦点为F,点F在渐近线上的射影为M,O为坐标原点,则$\overrightarrow{OF}$•$\overrightarrow{MF}$=(  )
A.1B.2C.3D.4

分析 运用离心率公式解方程可得a=9,求得双曲线方程及渐近线方程,运用向量数量积的定义,可得$\overrightarrow{OF}$•$\overrightarrow{MF}$=|$\overrightarrow{OF}$|•|$\overrightarrow{MF}$|•cos∠OFM,运用F到渐近线的距离,即可得到所求值.

解答 解:由题意可得e=$\frac{\sqrt{a+4}}{\sqrt{a}}$=$\frac{\sqrt{13}}{3}$,
可得a=9,双曲线的方程为$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{4}$=1,焦点F($\sqrt{13}$,0),
则$\overrightarrow{OF}$•$\overrightarrow{MF}$=|$\overrightarrow{OF}$|•|$\overrightarrow{MF}$|•cos∠OFM=|$\overrightarrow{MF}$|2
由F到渐近线y=-$\frac{2}{3}$x的距离为|MF|=$\frac{2\sqrt{13}}{\sqrt{4+9}}$=2,
则$\overrightarrow{OF}$•$\overrightarrow{MF}$=4.
故选D.

点评 本题考查双曲线的方程和性质,主要是渐近线方程的运用,同时考查向量的数量积的定义和计算,考查运算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网