题目内容
已知函数f(x)=cos(2x+φ)(|φ|<
)的图象向左平移
个单位后的一条对称轴为x=
,则φ的取值为( )
| π |
| 2 |
| π |
| 6 |
| π |
| 4 |
A、
| ||
B、
| ||
C、
| ||
D、
|
考点:函数y=Asin(ωx+φ)的图象变换
专题:三角函数的图像与性质
分析:求出y=cos(2x+φ)图象平移后所得函数解析式,利用函数的对称轴求出φ,从而得到答案.
解答:
解:将y=cos(2x+φ)图象向左平移
个单位所得函数为 y=cos[2(x+
)+φ]=cos(2x+
+φ),
由于所得图象的对称轴是x=
,
∴2×
+
+φ=kπ,k∈Z,∵|φ|<
,∴φ=
.
故选:B.
| π |
| 6 |
| π |
| 6 |
| π |
| 3 |
由于所得图象的对称轴是x=
| π |
| 4 |
∴2×
| π |
| 4 |
| π |
| 3 |
| π |
| 2 |
| π |
| 6 |
故选:B.
点评:本题考查三角函数的图象变换及简单性质,判断得图象的对称轴方程的应用,是解题的关键.
练习册系列答案
相关题目
已知服从正态分布N(μ,σ2)的随机变量在区间(μ-σ,μ+σ),(μ-2σ,μ+2σ)和(μ-3σ,μ+3σ)内取值的概率分别为68.3%,95.4%和99.7%.某校高一年级1000名学生的某次考试成绩服从正态分布N(90,152),则此次成绩在(60,120)范围内的学生大约有( )
| A、997人 | B、972人 |
| C、954人 | D、683人 |
已知tan(α-π)=
,且α∈(
,
),则sin(α+
)=( )
| 3 |
| 4 |
| π |
| 2 |
| 3π |
| 2 |
| π |
| 2 |
A、
| ||
B、-
| ||
C、
| ||
D、-
|
已知函数f(x)=cosx,数列{an}中,an=
f[
],数列{bn}中,bn=
f(
),n∈N*,则下列说法正确的是( )
| π |
| 2n |
| n |
| i=1 |
| (i-1)π |
| 2n |
| π |
| 2n |
| n |
| i=1 |
| iπ |
| 2n |
| A、{an}是递增数列且an>1,{bn}是递减数列且bn>1 |
| B、{an}是递增数列且an<1,{bn}是递增数列且bn>1 |
| C、{an}是递增数列且an<1,{bn}是递减数列且bn<1 |
| D、{an}是递减数列且an>1,{bn}是递增数列且bn<1 |
设偶函数f(x)的定义域为(-π,0)∪(0,π),当x∈(0,π)时,f(x)=-f′(
)sin x-πln x,若a=f(logπ3),b=f(-log39),c=f(log23),则a、b、c的大小关系为( )
| π |
| 2 |
| A、a>b>c |
| B、b>c>a |
| C、c>a>b |
| D、a>c>b |