题目内容

已知向量
a
=(1,2),
b
=(x,1),
u
=
a
+2
b
v
=2
a
-
b
,且
u
v
,求x的值.
考点:平面向量共线(平行)的坐标表示
专题:计算题,平面向量及应用
分析:由向量的数乘和坐标加减法运算求得
u
v
,然后利用向量共线的坐标表示列式求解x的值.
解答: 解:∵
a
=(1,2),
b
=(x,1),
u
=
a
+2
b
═(1,2)+2(x,1)=(1+2x,4),
v
=2
a
-
b
=2(1,2)-(x,1)=(2-x,3),
u
v

∴3(1+2x)-4(2-x)=0,
解得x=
1
2
点评:本题考查了向量平行用坐标表示的方法,在高考题中常常出现,常与向量的模、向量的坐标表示等联系在一起,要特别注意垂直与平行的区别.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网