题目内容
16.已知实数x,y满足x2+y2≤1,则x+y-xy的最大值为1.分析 由实数x、y满足x2+y2≤1,利用三角函数代换x=cosθ,y=sinθ,令t=sinθ+cosθ=$\sqrt{2}$sin(θ+$\frac{π}{4}$),(θ∈[0,2π)),x+y-xy转化为-$\frac{1}{2}$(t-1)2+1,根据利用二次函数的单调性即可得出.
解答 解:∵实数x、y满足x2+y2≤1,
∴可设x=cosθ,y=sinθ.
令t=sinθ+cosθ=$\sqrt{2}$sin(θ+$\frac{π}{4}$),(θ∈[0,2π)),
∴-$\sqrt{2}$≤t≤$\sqrt{2}$,
则t2=1+2sinθcosθ,可得sinθcosθ=$\frac{1}{2}$(t2-1).
∴x+y-xy=cosθ+sinθ-sinθcosθ=t-$\frac{1}{2}$(t2-1)=-$\frac{1}{2}$(t-1)2+1
当且仅当t=1,x+y-xy取得最大值为1.
故答案为:1
点评 本题考查了圆的参数方程、三角函数代换、三角函数基本关系式、二次函数的单调性等基础知识与基本技能方法,考查了转化方法和计算能力,属于中档题.
练习册系列答案
相关题目
7.已知全集U=R,集合M={x|0≤x<5},N={x|x≥2},则(∁UN)∩M=( )
| A. | {x|0≤x<2} | B. | {x|0<x≤2} | C. | {x|0<x<2} | D. | {x|0≤x≤2} |
1.直角梯形ABCD满足AB∥CD,AD=CD=$\frac{1}{2}$AB=1,AD⊥AB,点M是梯形边上的任意一点.则AM≥$\sqrt{2}$的概率是( )
| A. | $\frac{4+\sqrt{2}}{7}$ | B. | $\frac{4-\sqrt{2}}{7}$ | C. | $\frac{4+\sqrt{2}}{8}$ | D. | $\frac{4-\sqrt{2}}{8}$ |
6.sin20°cos40°+sin70°sin140°的值等于( )
| A. | $\frac{1}{4}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{\sqrt{3}}{4}$ |