题目内容

如图,我国某搜救舰艇以30(海里/小时)的速度在南海某区域搜索,在点A处测得基地P在南偏东60°,向北航行40分钟后到达点B,测得基地P在南偏东30°,并发现在北偏东60°的航向上有疑似马航飘浮物,搜救舰艇立即转向直线前往,再航行80分钟到达飘浮物C处,求此时P、C间的距离.
考点:解三角形的实际应用
专题:解三角形
分析:现根据题意求得AB,BC,进而根据∠A,∠ABP,∠APB利用正弦定理求得BP,最后利用勾股定理求得PC.
解答: 解:AB=30×
40
60
=20,BC=30×
80
60
=40.
在△ABP中,∠A=120°,∠ABP=30°,∠APB=30°,
∴BP=
AB
sin∠APB
•sin∠BAP=
20
sin30°
sin120°=20
3

在Rt△BCP中,
PC=
BC2+BP2
=
402+(20
3
)2
=20
7

∴P、C间的距离为20
7
(海里).
点评:本题主要考查了解三角形的实际应用.解题的过程中注意利用三角形中的已知条件,利用正弦定理和余弦定理等基础知识来解决.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网