题目内容
2.(B组题)已知⊙O的方程为x2+y2=8,点P是圆O上的一个动点,若线段OP的垂直平分线总不经过x=±a与y=±a(其中a为正常数)所围成的封闭图形内部的任意一个点,则实数a的最大值为1.分析 根据题意画出图形,结合图形得出OP的垂直平分线形成的区域,
以及x=±a和y=±a表示的区域,再根据题意求出a的最大值.
解答
解:如图所示,
随着点P在圆O上运动,
OP的垂直平分线形成的区域是圆:x2+y2=2的外部,
也在区域x=±a和y=±a表示正方形EFGH的外部,
若OP的垂直平分线总是不经过x=±a与y=±a(其中a为正常数)
所围成的封闭图形内部的任意一个点,
则a≤1,即a的最大值是1.
故答案为:1.
点评 本题主要考查二元一次方程与平面区域、圆的方程与垂直平分线的应用问题,是中档题.
练习册系列答案
相关题目
1.等比数列{an}中,a2=1,a4=2,则a6=( )
| A. | $2\sqrt{2}$ | B. | 4 | C. | $4\sqrt{2}$ | D. | 8 |
13.某医疗科研项目对5只实验小白鼠体内的A、B两项指标数据进行收集和分析,得到的数据如下表:
(1)若通过数据分析,得知A项指标数据与B项指标数据具有线性相关关系,试根据上表,求B项指标数据y关于A项指标数据x的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$;
(2)现要从这5只小白鼠中随机抽取3只,求其中至少有一只B项指标数据高于3的概率.
参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.
| 指标 | 1号小白鼠 | 2号小白鼠 | 3号小白鼠 | 4号小白鼠 | 5号小白鼠 |
| A | 5 | 7 | 6 | 9 | 8 |
| B | 2 | 2 | 3 | 4 | 4 |
(2)现要从这5只小白鼠中随机抽取3只,求其中至少有一只B项指标数据高于3的概率.
参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.
10.
某几何体的三视图如图所示,则其表面积为( )
| A. | 18 | B. | 22 | C. | 21 | D. | 32 |
7.过点O(1,0)作函数f(x)=ex的切线,则切线方程为( )
| A. | y=e2(x-1) | B. | y=e(x-1) | C. | y=e2(x-1)或y=e(x-1) | D. | y=x-1 |
18.已知集合$A=\{x∈Z|\frac{x+1}{x-2}≤0\}$,则集合A的子集的个数为( )
| A. | 7 | B. | 8 | C. | 15 | D. | 16 |