题目内容

6.一项针对人们休闲方式的调查结果如下:受调查对象总计124人,其中女性70人,男性54人.女性中有43人主要的休闲方式是看电视,另外27人主要的休闲方式是运动;男性中有21人主要的休闲方式是看电视,另外33人主要的休闲方式是运动.
(1)根据以上数据建立一个2×2的列联表;
(2)根据下列提供的独立检验临界值表,你最多能有多少把握认为性别与休闲方式有关系?
独立检验临界值表:
P(K2≥k00.500.400.250.150.100.050.0250.0100.0050.001
k00.4550.7081.3232.0722.7063.8415.0246.6357.87910.828
参考公式:K2=$\frac{n(ad-bc)}{(a+b)(c+d)(a+c)(b+d)}$.

分析 (1)根据共调查了124人,其中女性70人,男性54人.女性中有43人主要的休闲方式是看电视,另外27人的休闲方式是运动;男性中有21人主要的休闲方式是看电视,另外33人主要的休闲方式是运动.得到列联表.
(2)根据列联表中所给的数据做出观测值,把观测值同临界值进行比较得到在犯错误的概率不超过0.025的前提下认为“休闲方式与性别有关”.

解答 解:(1)列联表如下:

看电视运动合计/人
女性/人432770
男性/人213354
合计/人6460124
(2)假设“休闲方式与性别无关”,
由公式算得K2=$\frac{124×(43×33-27×21)^{2}}{70×54×64×60}$≈6.201,
比较P(K2≥5.024)≈0.025,
所以有理由认为假设“休闲方式与性别无关”是不合理的,即在犯错误的概率不超过0.025的前提下认为“休闲方式与性别有关”.

点评 独立性检验是考查两个分类变量是否有关系,并且能较精确的给出这种判断的可靠程度的一种重要的统计方法,主要是通过k2的观测值与临界值的比较解决的.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网