题目内容
16.已知函数f(x)=x3-3x2-9x+2(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)求函数f(x)在区间[-2,2]上的最小值.
分析 (Ⅰ)求出函数的导数,解关于导数的方程,求出函数的单调区间即可;(Ⅱ)根据函数的单调性求出f(x)在闭区间的最小值即可.
解答 解:(Ⅰ)f′(x)=3x2-6x-9=3(x+1)(x-3),
令f′(x)=0,得x=-1或x=3,
当x变化时,f′(x),f(x)在区间R上的变化状态如下:
| x | (-∞-1) | -1 | (-1,3) | 3 | (3,+∞) |
| f′(x) | + | 0 | - | 0 | + |
| f(x) | ↗ | 极大 | ↘ | 极小 | ↗ |
(Ⅱ)因为f(-2)=0,f(2)=-20,
再结合f(x)的单调性可知,
函数f(x)在区间[-2,2]上的最小值为-20.
点评 本题考查了函数的单调性、最值问题,考查导数的应用,是一道中档题.
练习册系列答案
相关题目
6.一项针对人们休闲方式的调查结果如下:受调查对象总计124人,其中女性70人,男性54人.女性中有43人主要的休闲方式是看电视,另外27人主要的休闲方式是运动;男性中有21人主要的休闲方式是看电视,另外33人主要的休闲方式是运动.
(1)根据以上数据建立一个2×2的列联表;
(2)根据下列提供的独立检验临界值表,你最多能有多少把握认为性别与休闲方式有关系?
独立检验临界值表:
参考公式:K2=$\frac{n(ad-bc)}{(a+b)(c+d)(a+c)(b+d)}$.
(1)根据以上数据建立一个2×2的列联表;
(2)根据下列提供的独立检验临界值表,你最多能有多少把握认为性别与休闲方式有关系?
独立检验临界值表:
| P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
11.函数y=ex(2x-1)的大致图象是( )
| A. | B. | ||||
| C. | D. |
1.若复数z1,z2在复平面内的对应点关于虚轴对称,且z1=1+i,则z2=( )
| A. | 1+i | B. | 1-i | C. | -1-i | D. | -1+i |
5.互联网背景下的“懒人经济”和“宅经济”渐成声势,推动了互联网餐饮行业的发展,而“80后”、“90后”逐渐成为餐饮消费主力,年轻人的餐饮习惯的改变,使省时、高效、正规的外送服务逐渐进入消费者的视野,美团外卖为了调查市场情况,对50人进行了问卷调查得到了如下的列联表,按照出生年龄,对喜欢外卖与否,采用分成抽样的方法抽取容量为10的样本,则抽到喜欢外卖的人数为6.
(Ⅰ)请将下面的列联表补充完整:
(Ⅱ)能否在犯错误的概率不超过0.005的前提下认为喜欢外卖与年龄有关?说明你的理由;
(Ⅲ)把“80后”中喜欢外卖的10个消费者从2到11进行编号,从中抽取一人,先后两次抛掷一枚骰子,出现的点数之和为被抽取的序号,试求抽到6号或10号的概率.
下面的临界值表供参考:
(参考公式:K2=$\frac{{n(ad-bc)}^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
(Ⅰ)请将下面的列联表补充完整:
| 喜欢外卖 | 不喜欢外卖 | 合计 | |
| 90后 | 20 | 5 | 25 |
| 80后 | 10 | 15 | 25 |
| 合计 | 30 | 20 | 50 |
(Ⅲ)把“80后”中喜欢外卖的10个消费者从2到11进行编号,从中抽取一人,先后两次抛掷一枚骰子,出现的点数之和为被抽取的序号,试求抽到6号或10号的概率.
下面的临界值表供参考:
| P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |