题目内容
设数列{an} 的首项为a1=1,前n项和为Sn,且nan-Sn=2n(n-1),n∈N*.(1)求a2的值及数列{an} 的通项公式an;
(2)若数列 {bn} 满足:4bn=Sn+n-1+(-1)n,当n≥2,记En=
| 22 |
| b2 |
| 33 |
| b3 |
| 42 |
| b4 |
| n2 |
| bn |
①计算E9的值;
②求
| lim |
| n→∞ |
分析:(1)由题意数列{an} 的首项为a1=1,前n项和为Sn,且nan-Sn=2n(n-1),利用数列的前n项和求出通项即可;
(2)①有数列 {bn} 满足:4bn=Sn+n-1+(-1)n,先推导出
通项公式,②并对该式子分奇偶进行讨论求出2n-En=
+
+
+…+
,并有导出
的通项公式代入,再利用数列的极限求得.
(2)①有数列 {bn} 满足:4bn=Sn+n-1+(-1)n,先推导出
| n2 |
| bn |
| 22 |
| b2 |
| 33 |
| b3 |
| 42 |
| b4 |
| n2 |
| bn |
| n2 |
| bn |
解答:解:(1)因为有已知:nan-Sn=2n(n-1),a2=5,
当n≥2时,(n-1)an-1-Sn-1=2(n-1)(n-2),
∴nan-(n-1)an-1-Sn+Sn-1=2n(n-1)-2(n-1)(n-2),
即(n-1)(an-an-1)=4(n-1)(n≥2),∴an-an-1=4(n≥2),
故数列{an}是公差为4的等差数列,
∴an=4n-3(n∈N+);
(2)由于数列 {bn} 满足:4bn=Sn+n-1+(-1)n,
∴4bn=2n2-1+(-1)n(n∈N+),∴bn=
,
故b1=0,
=
(n≥2,n∈N+),
当n为大于0的偶数时,
=
=2,
当n为大于1的奇数时,
=
=
=2+
-
,
∴E9=(b1+b3+b5+b7+b9)+(b2+b4+b6+b8)=8+8+
-
=
当n>1,且n∈N+时,若n为偶数,则2n-En=2n-[2×
+2(
-1)+
-
]=
+
,
若n为大于1的奇数,则2n-En=2n-[2×(
)+2(
)+
-
]=
+
,
∴2n-En=
+
∴
(2n-En)=
[
+
]=
.
当n≥2时,(n-1)an-1-Sn-1=2(n-1)(n-2),
∴nan-(n-1)an-1-Sn+Sn-1=2n(n-1)-2(n-1)(n-2),
即(n-1)(an-an-1)=4(n-1)(n≥2),∴an-an-1=4(n≥2),
故数列{an}是公差为4的等差数列,
∴an=4n-3(n∈N+);
(2)由于数列 {bn} 满足:4bn=Sn+n-1+(-1)n,
∴4bn=2n2-1+(-1)n(n∈N+),∴bn=
| 2n2-1+(-1)n |
| 4 |
故b1=0,
| n2 |
| bn |
| 4n2 |
| 2n2-1+(-1)n |
当n为大于0的偶数时,
| n2 |
| bn |
| 4n2 |
| 2n2 |
当n为大于1的奇数时,
| n2 |
| bn |
| 4n2 |
| 2n2-2 |
| 2n2 |
| n2-1 |
| 1 |
| n-1 |
| 1 |
| n+1 |
∴E9=(b1+b3+b5+b7+b9)+(b2+b4+b6+b8)=8+8+
| 1 |
| 3-1 |
| 1 |
| 9+1 |
| 82 |
| 5 |
当n>1,且n∈N+时,若n为偶数,则2n-En=2n-[2×
| n |
| 2 |
| n |
| 2 |
| 1 |
| 2 |
| 1 |
| n |
| 3 |
| 2 |
| 1 |
| n |
若n为大于1的奇数,则2n-En=2n-[2×(
| n-1 |
| 2 |
| n-1 |
| 2 |
| 1 |
| 2 |
| 1 |
| n+1 |
| 3 |
| 2 |
| 1 |
| n+1 |
∴2n-En=
| 3 |
| 2 |
| 2 |
| 2n+1-(-1)n |
∴
| lim |
| n→∞ |
| lim |
| n→∞ |
| 3 |
| 2 |
| 2 |
| 2n+1-(-1)n |
| 3 |
| 2 |
点评:此题考查了学生的分类讨论的能力及严谨的逻辑推导能力,还考查了已知数列的前n项的和求数列的通项,数列的极限.
练习册系列答案
相关题目