题目内容

设数列{an}的首项a1
1
4
,且an+1=
1
2
an
n是偶
an+
1
4
n是奇
,记bn=a2n-1-
1
4
,n=1,2,3…
(Ⅰ)求a2,a3
(Ⅱ)判断数列{bn}是否为等比数列,并证明你的结论;
(Ⅲ)求
lim
n→∞
(b1+b2+…+bn
分析:(I)根据题设条件,分别令n=1,2,能够求出a2和a3
(II)由a4=a3+
1
4
=
1
2
a+
3
8
,知a5=
1
2
a4=
1
4
a+
3
16
,所以b1=a1-
1
4
=a-
1
4
,b2=a3-
1
4
=
1
2
(a-
1
4
),b3=a5-
1
4
=
1
4
(a-
1
4
),猜想:{bn}是公比为
1
2
的等比数列.再用题设条件进行证明.
(III)
lim
n→∞
(b1+b2+…+bn)=
lim
n→∞
lim
n→∞
b1(1-
1
2n
)
1-
1
2
=
b1
1-
1
2
,由此能求出其结果.
解答:解:(I)a2=a1+
1
4
=a+
1
4
,a3=
1
2
a2=
1
2
a+
1
8

(II)∵a4=a3+
1
4
=
1
2
a+
3
8
,所以a5=
1
2
a4=
1
4
a+
3
16

所以b1=a1-
1
4
=a-
1
4
,b2=a3-
1
4
=
1
2
(a-
1
4
),b3=a5-
1
4
=
1
4
(a-
1
4
),
猜想:{bn}是公比为
1
2
的等比数列•
证明如下:
因为bn+1=a2n+1-
1
4
=
1
2
a2n-
1
4
=
1
2
(a2n-1-
1
4
)=
1
2
bn,(n∈N*)
所以{bn}是首项为a-
1
4
,公比为
1
2
的等比数列.
(III)
lim
n→∞
(b1+b2+…+bn)=
lim
n→∞
lim
n→∞
b1(1-
1
2n
)
1-
1
2
=
b1
1-
1
2
=2(a-
1
4
).
点评:本题考查数列的极限和运用,解题时要认真审题,注意公式的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网