题目内容
设数列{an}的首项a1≠| 1 |
| 4 |
|
| 1 |
| 4 |
(Ⅰ)求a2,a3;
(Ⅱ)判断数列{bn}是否为等比数列,并证明你的结论;
(Ⅲ)求
| lim |
| n→∞ |
分析:(I)根据题设条件,分别令n=1,2,能够求出a2和a3.
(II)由a4=a3+
=
a+
,知a5=
a4=
a+
,所以b1=a1-
=a-
,b2=a3-
=
(a-
),b3=a5-
=
(a-
),猜想:{bn}是公比为
的等比数列.再用题设条件进行证明.
(III)
(b1+b2+…+bn)=
=
,由此能求出其结果.
(II)由a4=a3+
| 1 |
| 4 |
| 1 |
| 2 |
| 3 |
| 8 |
| 1 |
| 2 |
| 1 |
| 4 |
| 3 |
| 16 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 2 |
(III)
| lim |
| n→∞ |
| lim |
| n→∞ |
| lim |
| n→∞ |
b1(1-
| ||
1-
|
| b1 | ||
1-
|
解答:解:(I)a2=a1+
=a+
,a3=
a2=
a+
;
(II)∵a4=a3+
=
a+
,所以a5=
a4=
a+
,
所以b1=a1-
=a-
,b2=a3-
=
(a-
),b3=a5-
=
(a-
),
猜想:{bn}是公比为
的等比数列•
证明如下:
因为bn+1=a2n+1-
=
a2n-
=
(a2n-1-
)=
bn,(n∈N*)
所以{bn}是首项为a-
,公比为
的等比数列.
(III)
(b1+b2+…+bn)=
=
=2(a-
).
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 8 |
(II)∵a4=a3+
| 1 |
| 4 |
| 1 |
| 2 |
| 3 |
| 8 |
| 1 |
| 2 |
| 1 |
| 4 |
| 3 |
| 16 |
所以b1=a1-
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
猜想:{bn}是公比为
| 1 |
| 2 |
证明如下:
因为bn+1=a2n+1-
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2 |
所以{bn}是首项为a-
| 1 |
| 4 |
| 1 |
| 2 |
(III)
| lim |
| n→∞ |
| lim |
| n→∞ |
| lim |
| n→∞ |
b1(1-
| ||
1-
|
| b1 | ||
1-
|
| 1 |
| 4 |
点评:本题考查数列的极限和运用,解题时要认真审题,注意公式的合理运用.
练习册系列答案
相关题目