题目内容
14.已知直线l1:3x+2y+1=0,l2:x-2y-5=0,设直线l1,l2的交点为A,则点A到直线${l_0}:y=-\frac{3}{4}x-\frac{5}{2}$的距离为( )| A. | 1 | B. | 3 | C. | $\frac{{5\sqrt{7}}}{7}$ | D. | $\frac{{15\sqrt{7}}}{7}$ |
分析 先求出A坐标,再由点到直线的距离公式能求出结果.
解答 解:联立$\left\{\begin{array}{l}{3x+2y+1=0}\\{x-2y-5=0}\end{array}\right.$,得$\left\{\begin{array}{l}{x=1}\\{y=-2}\end{array}\right.$,∴A(1,-2),
∴点A到直线${l_0}:y=-\frac{3}{4}x-\frac{5}{2}$的距离为d=$\frac{|\frac{3}{4}×1-2+\frac{5}{2}|}{\sqrt{\frac{9}{16}+1}}$=1.
故选:A.
点评 本题考查点到直线的距离的求法,是基础题,解题时要认真审题,注意点到直线的距离公式的合理运用.
练习册系列答案
相关题目
4.数列的前4项为1,-$\frac{1}{2}$,$\frac{1}{3}$,-$\frac{1}{4}$,则此数列的通项公式可以是( )
| A. | (-1)n$\frac{1}{n}$ | B. | (-1)n+1$\frac{1}{n}$ | C. | (-1)n$\frac{1}{n+1}$ | D. | (-1)n+1$\frac{1}{n-1}$ |
5.已知函数$f(x)=\sqrt{3}cos(2x-\frac{π}{3})(x∈R)$,下列结论错误的是( )
| A. | 函数f(x)的最小正周期为π | B. | 函数f(x)图象关于点$(\frac{5π}{12},0)$对称 | ||
| C. | 函数f(x)在区间$[0,\frac{π}{2}]$上是减函数 | D. | 函数f(x)的图象关于直线$x=\frac{π}{6}$对称 |
19.定义函数序列:${f_1}(x)=f(x)=\frac{x}{1-x}$,f2(x)=f(f1(x)),f3(x)=f(f2(x)),…,fn(x)=f(fn-1(x)),则函数y=f2017(x)的图象与曲线$y=\frac{1}{x-2017}$的交点坐标为( )
| A. | $({-1,-\frac{1}{2018}})$ | B. | $({0,\frac{1}{-2017}})$ | C. | $({1,\frac{1}{-2016}})$ | D. | $({2,\frac{1}{-2015}})$ |
3.双曲线$\frac{x^2}{16}-\frac{y^2}{9}=1$的离心率是( )
| A. | $\frac{5}{4}$ | B. | $\frac{5}{3}$ | C. | $\frac{{\sqrt{7}}}{4}$ | D. | $\frac{25}{16}$ |