题目内容
3.双曲线$\frac{x^2}{16}-\frac{y^2}{9}=1$的离心率是( )| A. | $\frac{5}{4}$ | B. | $\frac{5}{3}$ | C. | $\frac{{\sqrt{7}}}{4}$ | D. | $\frac{25}{16}$ |
分析 根据双曲线方程求出a,c的值,根据离心率公式即可求出.
解答 解:由双曲线$\frac{x^2}{16}-\frac{y^2}{9}=1$可得a=4,c=5,
∴e=$\frac{c}{a}$=$\frac{5}{4}$,
故选:A
点评 本题考查双曲线的方程和性质,主要考查双曲线的离心率的求法,属于基础题.
练习册系列答案
相关题目
13.某公司的管理者通过公司近年来科研费用支出x(百万元)与公司所获得利润y(百万元)的散点图发现,y与x之间具有线性相关关系,具体数据如表:
(1)求y对x的回归直线方程;(参考数据:$\sum_{i=1}^{5}$x${\;}_{i}^{2}$=16.3,$\sum_{i=1}^{5}$xiyi=18.5)
(2)若该公司的科研投入从2011年开始连续10年每一年都比上一年增加10万元,预测2017年该公司可获得的利润为多少万元?
| 年份 | 2010 | 2011 | 2012 | 2013 | 2014 |
| 科研费用x(百万元) | 1.6 | 1.7 | 1.8 | 1.9 | 2.0 |
| 公司所获利润y(百万元) | 1 | 1.5 | 2 | 2.5 | 3 |
(2)若该公司的科研投入从2011年开始连续10年每一年都比上一年增加10万元,预测2017年该公司可获得的利润为多少万元?
14.已知直线l1:3x+2y+1=0,l2:x-2y-5=0,设直线l1,l2的交点为A,则点A到直线${l_0}:y=-\frac{3}{4}x-\frac{5}{2}$的距离为( )
| A. | 1 | B. | 3 | C. | $\frac{{5\sqrt{7}}}{7}$ | D. | $\frac{{15\sqrt{7}}}{7}$ |
11.直三棱柱ABC-A1B1C1的各顶点都在同一球面上,若AB=AC=AA1=2,∠BAC=120°,则此球的表面积等于( )
| A. | 20π | B. | 10π | C. | 5π | D. | 5$\sqrt{5}$π |
18.抛掷一枚质地均匀的骰子,向上的一面出现任意一种点数的概率都是$\frac{1}{6}$,记事件A为“向上的点数是奇数”,事件B为“向上的点数不超过3”,则概率P(A∪B)=( )
| A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{2}{3}$ | D. | $\frac{5}{6}$ |
8.一个几何体的三视图如图所示(单位:cm),则该几何体的表面积是( )

| A. | 4cm2 | B. | $\frac{43}{2}$cm2 | C. | 23cm2 | D. | 24cm2 |
12.“k=1”是“直线$kx-y-3\sqrt{2}=0$与圆x2+y2=9相切”的( )
| A. | 充分而不必要条件 | B. | 必要而不充分条件 | ||
| C. | 充分必要条件 | D. | 既不充分也不必要条件 |