题目内容
设l,m是两条不同的直线,α,β,γ是三个不同的平面,则下列命题正确的是( )
| A、若l∥m,m?β,则l∥β |
| B、若l∥α,m∥α,则l∥m |
| C、若α⊥γ,β⊥γ,α∩β=l,则l⊥γ |
| D、若l∥α,l∥β,则α∥β |
考点:空间中直线与直线之间的位置关系
专题:空间位置关系与距离
分析:利用空间中线线、线面、面面间的位置关系求解.
解答:
解:若l∥m,m?β,则l∥β或l?β,故A错误;
若l∥α,m∥α,则l与m平行或异面,故B错误;
若α⊥γ,β⊥γ,α∩β=l,则由平面垂直的性质得l⊥γ,故C正确;
若l∥α,l∥β,则α与β平行或相交,故D错误.
故选:C.
若l∥α,m∥α,则l与m平行或异面,故B错误;
若α⊥γ,β⊥γ,α∩β=l,则由平面垂直的性质得l⊥γ,故C正确;
若l∥α,l∥β,则α与β平行或相交,故D错误.
故选:C.
点评:本题考查命题真假的判断,是基础题,解题时要认真审题,注意空间思维能力的培养.
练习册系列答案
相关题目
不等式组
表示的区域为A,若x,y分别表示甲、乙两人各掷一次骰子所得的点数,则点(x,y)在区域A中的概率为( )
|
A、
| ||
B、
| ||
C、
| ||
D、
|
正三棱柱体积为V,则其表面积最小时,底面边长为( )
A、
| |||
B、
| |||
C、
| |||
D、2
|
已知直线(1-λ)x+(3λ+1)y-4=0(λ∈R)所过定点恰好落在曲线f(x)=
上,若函数h(x)=f(x)-mx+2有三个不同的零点,则实数m的范围是( )
|
A、(
| ||
B、(-∞,
| ||
C、(-∞,
| ||
D、(
|
函数y=f(x)的值域为[-1,3],则函数y=f(x+1)的值域为( )
| A、[1,4] |
| B、[-2,2] |
| C、[0,3] |
| D、[-1,3] |
在空间直角坐标系中,已知A(1,0,0),B(-1,0,0),C(0,1,
),D(0,-1,
),则四面体ABCD的体积为( )
| 2 |
| 2 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
已知圆C:(x-1)2+(y-1)2=4与y轴相交于A、B两点,则
•
=( )
| CA |
| CB |
| A、-2 | B、2 | C、4 | D、-4 |
我们把平面内与直线垂直的非零向量称为直线的法向量,在平面直角坐标系中,利用求动点轨迹方程的方法,可以求出过点A(-3,4),且法向量为
=(1,-2)的直线(点法式)方程为:1×(x+3)+(-2)×(y-4)=0,化简得x-2y+11=0.类比以上方法,在空间直角坐标系中,经过点A(1,2,3),且法向量为
=(-1,-2,1)的平面的方程为( )
| n |
| n |
| A、x+2y-z-2=0 |
| B、x-2y-z-2=0 |
| C、x+2y+z-2=0 |
| D、x+2y+z+2=0 |
| E、+ |