题目内容
已知数列{an}满足:a3n-2=2an-1,a3n-1=an+2,a3n=2n-3an,Sn表示{an}的前n项和,那么S100= .
考点:数列的求和
专题:等差数列与等比数列
分析:由已知条件得a3n-2+a3n-1+a3n=2an-1+an+2+2n-3an=2n+1,a1=2a1-1,由数列的周期性推导出a100=2A34-1=-31,由此得S100=(a1+a2+a3)+(a4+a5+a6)+(a7+a8+a9)+…+(a97+a98+a99)+a100,从而能求出结果.
解答:
解:∵数列{an}满足:a3n-2=2an-1,a3n-1=an+2,a3n=2n-3an,
∴a3n-2+a3n-1+a3n=2an-1+an+2+2n-3an=2n+1,
a1=2a1-1,解得a1=1,a2=a1+2=3,
a4=2a2-1=5,
a12=8-3a4=8-15=-7,
a34=2a12-1=-15,
a100=2A34-1=-31,
∴S100=(a1+a2+a3)+(a4+a5+a6)+(a7+a8+a9)+…+(a97+a98+a99)+a100
=2(1+2+3+…+33)+33-31
=2×
-64
=1124.
故答案为:1124.
∴a3n-2+a3n-1+a3n=2an-1+an+2+2n-3an=2n+1,
a1=2a1-1,解得a1=1,a2=a1+2=3,
a4=2a2-1=5,
a12=8-3a4=8-15=-7,
a34=2a12-1=-15,
a100=2A34-1=-31,
∴S100=(a1+a2+a3)+(a4+a5+a6)+(a7+a8+a9)+…+(a97+a98+a99)+a100
=2(1+2+3+…+33)+33-31
=2×
| 33(1+33) |
| 2 |
=1124.
故答案为:1124.
点评:本题考查数列的前100项和的求法,是中档题,解题时要认真审题,注意数列的周期性的合理运用.
练习册系列答案
相关题目
设l,m是两条不同的直线,α,β,γ是三个不同的平面,则下列命题正确的是( )
| A、若l∥m,m?β,则l∥β |
| B、若l∥α,m∥α,则l∥m |
| C、若α⊥γ,β⊥γ,α∩β=l,则l⊥γ |
| D、若l∥α,l∥β,则α∥β |