题目内容
15.化简 $\overrightarrow{AB}-\overrightarrow{CD}+\overrightarrow{BD}-\overrightarrow{AC}$的结果是( )| A. | $\overrightarrow 0$ | B. | $\overrightarrow{AC}$ | C. | $\overrightarrow{BD}$ | D. | $\overrightarrow{DA}$ |
分析 利用向量三角形法则、相反向量的定义即可得出.
解答 解:原式=$\overrightarrow{AD}$+$\overrightarrow{DC}$+$\overrightarrow{CA}$
=$\overrightarrow{0}$,
故选:A.
点评 本题考查了向量三角形法则、相反向量的定义,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关题目
5.已知正方形ABCD的面积为2,点P在边AB上,则$\overrightarrow{PD}•\overrightarrow{PC}$的最小值为( )
| A. | $\frac{{\sqrt{6}}}{2}$ | B. | $\frac{3}{2}$ | C. | 2 | D. | $\sqrt{2}$ |
6.已知函数f(x)=e|x|,函数g(x)=$\left\{\begin{array}{l}{ex,x≤4}\\{4{e}^{5-x},x>4}\end{array}\right.$对任意的x∈[1,m](m>1),都有f(x-2)≤g(x),则m的取值范围是( )
| A. | (1,2+ln2] | B. | (1,$\frac{7}{2}$+ln2] | C. | [ln2,2) | D. | (2,$\frac{7}{2}$+ln2) |
3.约束条件为$\left\{\begin{array}{l}{x+y-5≤0}\\{x-y-k≤0}\\{x≥0,y≥0}\end{array}\right.$,目标函数Z=2x-y,则Z的最大值是( )
| A. | -4 | B. | 4 | C. | -5 | D. | 5 |
10.已知A(2,5,-6),点P在y轴上,|PA|=7,则点P的坐标是( )
| A. | (0,8,0) | B. | (0,2,0) | C. | (0,8,0)或(0,2,0) | D. | (0,-8,0) |
4.在10件同类产品中,有2次品,从中任取3件产品,其中不可能事件为( )
| A. | 3件都是正品 | B. | 至少有1件次品 | C. | 3件都是次品 | D. | 至少有1件正品 |