题目内容

一个三棱锥的各棱长均相等,其内部有一个内切球,即球与三棱锥的各面均相切(球在三棱锥的内部,且球与三棱锥的各面只有一个交点),过一条侧棱和对边的中点作三棱锥的截面,所得截面图形是(  )
A、
B、
C、
D、
考点:球内接多面体,棱锥的结构特征
专题:计算题,空间位置关系与距离
分析:根据题意,设三棱锥S-ABC的各棱长均相等,作出经过侧棱SC与AB中点D的截面,得到截面△SCD,平面SCD截内切圆于圆O,由正四面体的性质与图形的对称性质加以分析,可知圆0与SD、CD相切而与SC相离.由此对照各个选项,即可得到本题答案.
解答: 解:如图所示,设三棱锥S-ABC的各棱长均相等,球O是它的内切球,
设H为底面△ABC的中心,根据对称性可得内切球的球心0在三棱锥的高SH上,
由SC、SH确定的平面交AB于D,连结SD、CD,得到截面△SCD,
截面SCD就是经过侧棱SC与AB中点的截面.
平面SCD与内切球相交,截得球大圆如图所示.
∵△SCD中,圆O分别与SD、CD相切于点E、H,且SD=CD,圆O与SC相离,
∴对照各个选项,可得只有B项的截面图形符合题意.
故选:B
点评:本题给出正四面体的内切球,经过一条侧棱与对棱中点的截面与内切球相交,求所得的截面的形状.着重考查了正四面体的性质、球的性质、球与多面体的内接外切等知识,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网