题目内容
(Ⅰ)根据图中的数据信息,求出众数x1和中位数x2(精确到整数分钟);
(Ⅱ)小明的父亲上班离家的时间y在上午7:00至7:30之间,而送报人每天在x1时刻前后半小时内把报纸送达(每个时间点送达的可能性相等),求小明的父亲在上班离家前能收到报纸(称为事件A)的概率.
考点:古典概型及其概率计算公式,频率分布直方图
专题:概率与统计
分析:(Ⅰ)众数为出现频率最高的数,体现在直方图中应为最高矩形所在区间两端点的中点,中位数是从小到大排列中间位置的数,在直方图中其两边的小矩形面积相等,
(Ⅱ)考查几何概型,条件中已有父亲上班离家的时间y,再设报纸送达时间为x,关于两个变量的不等式围成平面区域内的点为所有可能,收到报纸即报纸送到时间早于父亲上班时间即想x≤y,围成平面区域为梯形,利用几何概型转化为面积之比求解即可.
(Ⅱ)考查几何概型,条件中已有父亲上班离家的时间y,再设报纸送达时间为x,关于两个变量的不等式围成平面区域内的点为所有可能,收到报纸即报纸送到时间早于父亲上班时间即想x≤y,围成平面区域为梯形,利用几何概型转化为面积之比求解即可.
解答:
解:(Ⅰ)众数最高矩形所在区间的中点,则x1=7:00
由频率分布直方图可知6:50<x2<7:10即410<x2<430
∴20×0.0033+20×0.0117+(x2-410)×0.0233
=20×0.0100+20×0.0017+(430-x2)×0.0233
解得x2=4,
(Ⅱ)设报纸送达时间为x,则小明父亲上班前能取到报纸等价于
,如图
所求概率为P=1-
=
由频率分布直方图可知6:50<x2<7:10即410<x2<430
∴20×0.0033+20×0.0117+(x2-410)×0.0233
=20×0.0100+20×0.0017+(430-x2)×0.0233
解得x2=4,
(Ⅱ)设报纸送达时间为x,则小明父亲上班前能取到报纸等价于
|
所求概率为P=1-
| ||
|
| 3 |
| 4 |
点评:本题(Ⅰ)考查在丢失原始数据的情况下利用直方图求解一些数据,尤其是众数,中位数和平均数,要理解并记忆,(Ⅱ)概率不是古典概型就是几何概型,事件可一一列举多位古典概型,否则为几何概型,设报纸送达时间为x,关于x、y的二元一次不等式组对应平面区域,转化为几何概型,求面积之比.
练习册系列答案
相关题目
在平行四边形ABCD中,
=
,
=
,
=3
,M为BC的中点,则
=( )
| AB |
| a |
| AD |
| b |
| AN |
| NC |
| MN |
A、-
| ||||||||
B、-
| ||||||||
C、
| ||||||||
D、-
|
下列命题中的真命题是( )
| A、?x∈R,x2>0 | ||
B、?x∈R,x+
| ||
| C、?x0∈R,sinx0+cosx0=2 | ||
D、?x0∈R,ln x0>(
|