题目内容

如图,四棱锥P-ABCD中,底面ABCD为菱形,∠BAD=60°,Q是AD的中点.
(1)若PA=PD,求证:平面PQB⊥平面PAD;
(2)若平面APD⊥平面ABCD,且PA=PD=AD=2,在线段PC上是否存在点M,使二面角M-BQ-C的大小为60°.若存在,试确定点M的位置,若不存在,请说明理由.
考点:与二面角有关的立体几何综合题,平面与平面垂直的判定
专题:空间位置关系与距离,空间角
分析:(1)由已知得PQ⊥AD,BQ⊥AD,由此能证明平面PQB⊥平面PAD.
(2)以Q为坐标原点,分别以QA,QB,QP为x,y,z轴,建立空间直角坐标系,利用向量法能求出存在点M为线段PC靠近P的三等分点满足题意.
解答: (1)证明:∵PA=PD,Q为AD的中点,∴PQ⊥AD,
又∵底面ABCD为菱形,∠BAD=60°,∴BQ⊥AD,
又PQ∩BQ=Q,∴AD⊥平面PQB,
又∵AD?平面PAD,
∴平面PQB⊥平面PAD.
(2)解:∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,PQ⊥AD,
∴PQ⊥平面ABCD,
以Q为坐标原点,分别以QA,QB,QP为x,y,z轴,
建立空间直角坐标系,如图
则Q(0,0,0),P(0,0,
3
),B(0,
3
,0),C(-2,
3
,0)
PM
PC
,0<λ<1,则M(-2λ,
3
λ
3
(1-λ)
),
平面CBQ的一个法向量
n1
=(0,0,1),
设平面MBQ的法向量为
n2
=(x,y,z),
QM
n2
=0
QB
n2
=0
,得
n2
=(
3-3λ
,0,
3
),
∵二面角M-BQ-C的大小为60°,
∴cos60°=|cos<
n1
n2
>|=|
3
(
3-3λ
)2+3
|=
1
2

解得λ=
1
3
,∴
PM
PC
=
1
3

∴存在点M为线段PC靠近P的三等分点满足题意.
点评:本题考查平面与平面垂直的证明,考查满足条件的点是否存在的判断与证明,解题时要认真审题,注意空间思维能力的培养.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网