题目内容

已知f(x)是定义在(0,+∞)上的增函数,当n∈N*时,有f(n)∈N*,f[f(n)]=3n,则f(1)+f(2)+f(3)+f(4)=
 
考点:函数单调性的性质
专题:函数的性质及应用
分析:结合题设条件,利用列举法一一验证,能够求出f(1)、f(2)、f(3)、f(4)的值,从而求得f(1)+f(2)+f(3)+f(4)的值.
解答: 解:若f(1)=1,则f(f(1))=f(1)=1,与条件f(f(n))=3n矛盾,故不成立.
若f(1)=3,则f(f(1))=f(3)=3,进而f(f(3))=f(3)=9,与前式矛盾,故不成立.
若f(1)=n(n>3),则f(f(1))=f(n)=3,与f(x)单调递增矛盾.
所以只剩f(1)=2.验证之:f(f(1))=f(2)=3,
进而f(f(2))=f(3)=6,
进而f(f(3))=f(6)=9,
由函数的单调性,f(4)=7,f(5)=8,
∴f(1)+f(2)+f(3)+f(4)=2+3+6+7=18,
故答案为:18.
点评:本题考查函数值的求法,解题时要认真审题,仔细解答,注意列举法的合理运用,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网