题目内容
用分期付款方式(贷款的月利率为1%)购买总价为25万元的汽车,购买当天首付15万元,此后可采用以下方式支付贷款:以后每月的这一天都支付相同数目的还款,20个月还完,则每月应还款约( )元(1.0120≈1.22)
| A、5545 | B、5546 |
| C、5547 | D、5548 |
考点:等比数列的前n项和
专题:等差数列与等比数列
分析:根据等比数列的应用,利用等比数列的求和公式进行计算即可得到结论.
解答:
解:设每月还款x万元,则x(1.0119+1.0119+…1.012+1.01+1)=10×1.0120,
即x•
=12.2
则x=
=0.5545(万元)=5445元,
故选:A
即x•
| 1-1.0120 |
| 1-1.01 |
则x=
| 12.2 |
| 0.22 |
故选:A
点评:本题主要考查等比数列的应用,利用确定数列的首项和公比是解决本题的关键.
练习册系列答案
相关题目
执行如图所示的程序框图所表示的程序,则所得的结果为( )

| A、4031 | B、4029 |
| C、-4023 | D、-4025 |
已知复数z=
的虚部为0,则实数m的值为( )
| m+2i |
| 3-4i |
A、
| ||
B、
| ||
C、-
| ||
D、-
|
设变量x,y满足约束条件
,则z=2x-y的最大值为( )
|
| A、-3 | ||
B、
| ||
| C、5 | ||
| D、6 |