题目内容

如图,已知A(n,-2),B(1,4)是一次函数y=kx+b的图象和反比例函数y=
m
x
的图象的两个交点,直线AB与y轴交于点C.
(1)求反比例函数和一次函数的解析式;
(2)求△AOC的面积.
考点:函数的图象与图象变化
专题:函数的性质及应用
分析:(1)由B点在反比例函数y=
m
x
,可求出m,再由A点在函数图象上,由待定系数法求出函数解析式;
(2)由上问求出的函数解析式联立方程求出A,B,C三点的坐标,从而求出△AOC的面积;
解答: 解:(1)∵B(1,4)在反比例函数y=
m
x
上,
∴m=4,
又∵A(n,-2)在反比例函数y=
m
x
=
4
x
的图象上,
∴n=-2,
又∵A(-2,-2),B(1,4)是一次函数y=kx+b的上的点,联立方程组解得,
k=2,b=2,
∴y=
4
x
,y=2x+2;
(2)∵y=2x+2,令x=0代入得C(0,2);
∴△AOC的面积为:S=
1
2
×2×2=2;
点评:此题考查一次函数和反比例函数的性质及图象,考查用待定系数法求函数的解析式.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网