题目内容
已知数列{an}的通项公式是an=
,(n∈N),记bn=(1-a1)(1-a2)…(1-an).
(1)求出数列{bn}通项公式;
(2)令Pn=bn-bn+1,求
(p1+p2+…+pn)的值.
| 1 |
| (n+1)2 |
(1)求出数列{bn}通项公式;
(2)令Pn=bn-bn+1,求
| lim |
| n→∞ |
考点:数列的求和,数列的概念及简单表示法,数列的极限
专题:等差数列与等比数列
分析:(1)由于an=
,(n∈N),可得1-an=1-
=
,即可得出bn.
(2)利用“裂项求和”与数列极限的运算性质即可得出.
| 1 |
| (n+1)2 |
| 1 |
| (n+1)2 |
| n(n+2) |
| (n+1)2 |
(2)利用“裂项求和”与数列极限的运算性质即可得出.
解答:
解:(1)∵an=
,(n∈N),
∴1-an=1-
=
,
∴bn=(1-a1)(1-a2)…(1-an)=
×
×
×…×
×
=
.
(2)Pn=bn-bn+1=
-
=
(
-
).
∴p1+p2+…+pn=
[(
-
)+(
-
)+…+(
-
)]=
(
-
).
∴
(p1+p2+…+pn)=
(
-
)=
.
| 1 |
| (n+1)2 |
∴1-an=1-
| 1 |
| (n+1)2 |
| n(n+2) |
| (n+1)2 |
∴bn=(1-a1)(1-a2)…(1-an)=
| 1×3 |
| 22 |
| 2×4 |
| 32 |
| 3×5 |
| 42 |
| (n-1)(n+1) |
| n2 |
| n(n+2) |
| (n+1)2 |
=
| n+2 |
| 2(n+1) |
(2)Pn=bn-bn+1=
| n+2 |
| 2(n+1) |
| n+3 |
| 2(n+2) |
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
∴p1+p2+…+pn=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| n+2 |
∴
| lim |
| n→∞ |
| lim |
| n→∞ |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| n+2 |
| 1 |
| 4 |
点评:本题考查了“累乘求积”、“裂项求和”与数列极限的运算性质,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
设f(x)在x=x°处可导,且
=1,则f′(x0)等于( )
| lim |
| △x→0 |
| f(x0+3△x)-f(x0) |
| △x |
| A、1 | ||
| B、0 | ||
| C、3 | ||
D、
|