题目内容

已知数列{an}的通项公式是an=
1
(n+1)2
,(n∈N),记bn=(1-a1)(1-a2)…(1-an).
(1)求出数列{bn}通项公式;
(2)令Pn=bn-bn+1,求
lim
n→∞
(p1+p2+…+pn)的值.
考点:数列的求和,数列的概念及简单表示法,数列的极限
专题:等差数列与等比数列
分析:(1)由于an=
1
(n+1)2
,(n∈N),可得1-an=1-
1
(n+1)2
=
n(n+2)
(n+1)2
,即可得出bn
(2)利用“裂项求和”与数列极限的运算性质即可得出.
解答: 解:(1)∵an=
1
(n+1)2
,(n∈N),
∴1-an=1-
1
(n+1)2
=
n(n+2)
(n+1)2

∴bn=(1-a1)(1-a2)…(1-an)=
1×3
22
×
2×4
32
×
3×5
42
×…×
(n-1)(n+1)
n2
×
n(n+2)
(n+1)2

=
n+2
2(n+1)

(2)Pn=bn-bn+1=
n+2
2(n+1)
-
n+3
2(n+2)
=
1
2
(
1
n+1
-
1
n+2
)

∴p1+p2+…+pn=
1
2
[(
1
2
-
1
3
)+(
1
3
-
1
4
)
+…+(
1
n+1
-
1
n+2
)]
=
1
2
(
1
2
-
1
n+2
)

lim
n→∞
(p1+p2+…+pn)=
lim
n→∞
1
2
(
1
2
-
1
n+2
)
=
1
4
点评:本题考查了“累乘求积”、“裂项求和”与数列极限的运算性质,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网