题目内容

9.在△ABC中,角A,B,C的对边分别为a,b,c,btanB+btanA=-2ctanB,且a=8,△ABC的面积为$4\sqrt{3}$,则b+c的值为$4\sqrt{5}$.

分析 由正弦定理和三角函数公式化简已知式子可得cosA的值,由余弦定理可求64=(b+c)2-bc,利用三角形面积公式可求bc=16,联立即可得解b+c的值.

解答 解:∵在△ABC中btanB+btanA=-2ctanB,
∴由正弦定理可得sinB(tanA+tanB)=-2sinCtanB,
∴sinB(tanA+tanB)=-2sinC•$\frac{sinB}{cosB}$,
∴cosB(tanA+tanB)=-2sinC,
∴cosB($\frac{sinA}{cosA}$+$\frac{sinB}{cosB}$)=-2sinC,
∴cosB•$\frac{sinAcosB+cosAsinB}{cosAcosB}$=-2sinC,
∴cosB•$\frac{sin(A+B)}{cosAcosB}$=$\frac{sinC}{cosA}$=-2sinC,
解得cosA=-$\frac{1}{2}$,A=$\frac{2π}{3}$;
∵a=8,由余弦定理可得:64=b2+c2+bc=(b+c)2-bc,①
∵△ABC的面积为$4\sqrt{3}$=$\frac{1}{2}$bcsinA=$\frac{1}{2}×\frac{\sqrt{3}}{2}$bc,可得:bc=16,②
∴联立①②可得:b+c=4$\sqrt{5}$.
故答案为:4$\sqrt{5}$.

点评 本题考查正、余弦定理解三角形,涉及同角三角函数基本关系和三角形的面积公式,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网