题目内容
9.在△ABC中,角A,B,C的对边分别为a,b,c,btanB+btanA=-2ctanB,且a=8,△ABC的面积为$4\sqrt{3}$,则b+c的值为$4\sqrt{5}$.分析 由正弦定理和三角函数公式化简已知式子可得cosA的值,由余弦定理可求64=(b+c)2-bc,利用三角形面积公式可求bc=16,联立即可得解b+c的值.
解答 解:∵在△ABC中btanB+btanA=-2ctanB,
∴由正弦定理可得sinB(tanA+tanB)=-2sinCtanB,
∴sinB(tanA+tanB)=-2sinC•$\frac{sinB}{cosB}$,
∴cosB(tanA+tanB)=-2sinC,
∴cosB($\frac{sinA}{cosA}$+$\frac{sinB}{cosB}$)=-2sinC,
∴cosB•$\frac{sinAcosB+cosAsinB}{cosAcosB}$=-2sinC,
∴cosB•$\frac{sin(A+B)}{cosAcosB}$=$\frac{sinC}{cosA}$=-2sinC,
解得cosA=-$\frac{1}{2}$,A=$\frac{2π}{3}$;
∵a=8,由余弦定理可得:64=b2+c2+bc=(b+c)2-bc,①
∵△ABC的面积为$4\sqrt{3}$=$\frac{1}{2}$bcsinA=$\frac{1}{2}×\frac{\sqrt{3}}{2}$bc,可得:bc=16,②
∴联立①②可得:b+c=4$\sqrt{5}$.
故答案为:4$\sqrt{5}$.
点评 本题考查正、余弦定理解三角形,涉及同角三角函数基本关系和三角形的面积公式,属于基础题.
练习册系列答案
相关题目
19.在三棱锥S-ABC中,∠ACB=90°,SA⊥平面ABC,SA=2,AC=BC=1,则异面直线SB与AC所成角的余弦值是( )
| A. | $\frac{\sqrt{6}}{3}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{\sqrt{3}}{3}$ | D. | $\frac{\sqrt{6}}{6}$ |
4.为迎接中共十九大,某校举办了“祖国,你好”诗歌朗诵比赛.该校高三年级准备从包括甲、乙、丙在内的7名学生中选派4名学生参加,要求甲、乙、丙这3名学生中至少有1人参加,且当这 3名学生都参加时,甲和乙的朗诵顺序不能相邻,那么选派的4名学生不同的朗诵顺序的种数为( )
| A. | 720 | B. | 768 | C. | 810 | D. | 816 |
1.已知球O是正三棱锥(底面为正三角形,顶点在底面的射影为底面中心)A-BCD的外接球,BC=3,$AB=2\sqrt{3}$,点E在线段BD上,且BD=3BE,过点E作圆O的截面,则所得截面圆面积的取值范围是( )
| A. | [π,4π] | B. | [2π,4π] | C. | [3π,4π] | D. | (0,4π] |
19.已知实数a,b,c满足a2+b=lna,则(a-c)2+(b+c-2)2的最小值为( )
| A. | 2$\sqrt{2}$ | B. | 8 | C. | $\sqrt{2}$ | D. | 2 |