题目内容
4.已知数列{an}满足:a1=0,an+1=npn+an(0<|p|<1).(1)求an;
(2)求证:|an|<$\frac{|p|}{(1-|p|)^{2}}$.
分析 (1)把已知数列递推式变形,利用累加法结合错位相减法求得an;
(2)根据p的范围,直接利用放缩法证明数列不等式.
解答 (1)解:由an+1=npn+an,得${a}_{n+1}-{a}_{n}=n{p}^{n}$,
∴${a}_{2}-{a}_{1}=1×{p}^{1}$,${a}_{3}-{a}_{2}=2×{p}^{2}$,${a}_{4}-{a}_{3}=3×{p}^{3}$,…${a}_{n}-{a}_{n-1}=(n-1){p}^{n-1}$,
累加得:${a}_{n}=1×{p}^{1}+2×{p}^{2}+…+(n-1){p}^{n-1}$,
则$p{a}_{n}=1×{p}^{2}+2×{p}^{3}+…+(n-1){p}^{n}$,
两式作差可得:$(1-p){a}_{n}=p+{p}^{2}+…+{p}^{n-1}-(n-1){p}^{n}$=$\frac{p(1-{p}^{n-1})}{1-p}-(n-1){p}^{n}$,
则${a}_{n}=\frac{p(1-{p}^{n-1})}{(1-p)^{2}}-\frac{(n-1){p}^{n}}{1-p}$;
(2)证明:|an|=|$\frac{p(1-{p}^{n-1})}{(1-p)^{2}}-\frac{(n-1){p}^{n}}{1-p}$|<|$\frac{p(1-{p}^{n-1})}{(1-p)^{2}}$|=|$\frac{p}{(1-p)^{2}}$||$\frac{1-{p}^{n-1}}{(1-p)^{2}}$|
<|$\frac{p}{(1-p)^{2}}$|=$\frac{|p|}{|(1-p)^{2}|}$≤$\frac{|p|}{(1-|p|)^{2}}$.
点评 本题考查数列递推式,训练了累加法求数列的通项公式,训练了利用错位相减法求数列的和,考查利用放缩法证明数列不等式,是中档题.
| A. | $\frac{209}{420}$ | B. | $\frac{19}{21}$ | C. | $\frac{23}{42}$ | D. | $\frac{13}{42}$ |
| A. | 1 | B. | k | C. | $\frac{k+1+|k-1|}{2}$ | D. | $\frac{k+1-|k-1|}{2}$ |