题目内容
己知定义在R上的函数y=f(x)满足f(x)=f(2-x),且当x≠1时,其导函数f′(x)满足f′(x)>xf′(x),若a∈(1,2),则( )
| A、f(log2a)<f(2a)<f(2) |
| B、f(2a)<f(2)<f(log2a) |
| C、f(log2a)<f(2)<f(2a) |
| D、f(2)<f(log2a)<f(2a) |
考点:导数的运算,函数的周期性
专题:导数的概念及应用
分析:由函数的性质得到函数的对称轴,再由f′(x)>xf′(x),得到函数的单调区间,由函数的单调性得到要证得结论.
解答:
解:函数f(x)对定义域R内任意x都有f(x)=f(2-x),
即函数图象的对称轴是x=1,
∵导函数f′(x)满足f′(x)>xf′(x),
∴f′(x)(1-x)>0,
∴x<1时,f′(x)>0,x>1时,f′(x)<0,
即 f(x)在(-∞,1)上递增,在(1,+∞)上递减;
∵a∈(1,2),
∴0<log2a<1;
∵f(0)=f(2),
∴f(2)<f(log2a);
∵23>2>1,
∴f(2a)<f(2),
∴f(2a)<f(2)<f(log2a).
故选:B.
即函数图象的对称轴是x=1,
∵导函数f′(x)满足f′(x)>xf′(x),
∴f′(x)(1-x)>0,
∴x<1时,f′(x)>0,x>1时,f′(x)<0,
即 f(x)在(-∞,1)上递增,在(1,+∞)上递减;
∵a∈(1,2),
∴0<log2a<1;
∵f(0)=f(2),
∴f(2)<f(log2a);
∵23>2>1,
∴f(2a)<f(2),
∴f(2a)<f(2)<f(log2a).
故选:B.
点评:本题考查了导数的运算,考查了函数单调性的性质,是基础的运算题.
练习册系列答案
相关题目
若a,b∈R,i是虚数单位,且a+(b-1)i=1+i,则
对应的点在( )
| 1-bi |
| ai |
| A、第一象限 | B、第二象限 |
| C、第三象限 | D、第四象限 |
化简
+
+
=( )
| AC |
| CD |
| DA |
A、
| ||
B、
| ||
C、
| ||
D、
|
已知函数f(x)=
.设a=log20.8,则f(f(a))的值等于( )
|
| A、1 | B、2 | C、-1 | D、-2 |
若向量
=(1,1),
=(1,-1),
=(-1,2),则
+2
-
=( )
| a |
| b |
| c |
| a |
| b |
| c |
| A、(4,-3) |
| B、(4,-2) |
| C、(1,2) |
| D、(2,-3) |
点M(3,4)到圆x2+y2=1上的点距离的最小值是( )
| A、1 | B、4 | C、5 | D、6 |