题目内容
11.某学校高三年级有两个文科班,三个理科班,现每个班指定1人,对各班的卫生进行检 查.若每班只安排一人检查,且文科班学生不检查文科班,理科班学生不检查自己所在的班,则不同安排方法的种数是24.分析 结合题意,分3步进行分析:①、在3个理科班的学生中任选2人,去检查2个文科班,②、剩余的1个理科班的学生去检查其他的2个理科班,③、将2个文科班学生安排检查剩下的2个理科班,由排列、组合数公式分别求出每一步的情况数目,由乘法原理计算可得答案.
解答 解:根据题意,分3步进行分析:
①、在3个理科班的学生中任选2人,去检查2个文科班,有C32A22=6种情况;
②、剩余的1个理科班的学生不能检查本班,只能检查其他的2个理科班,有2种情况,
③、将2个文科班学生全排列,安排检查剩下的2个理科班,有A22=2种情况;
则不同安排方法的种数6×2×2=24种;
故答案为:24
点评 本题考查排列、组合的综合运用,涉及分步和分类计数原理,关键是依据题意,进行分步分析.
练习册系列答案
相关题目
19.已知复数z=$\frac{2-{i}^{2017}}{1+i}$,则z的共轭复数在复平面内对应的点位于( )
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |