题目内容

5.已知sinφ=$\frac{3}{5}$,且φ∈($\frac{π}{2}$,π),函数f(x)=sin(ωx+φ)(ω>0)的图象的相邻两条对称轴之间的距离等于$\frac{π}{2}$,则f($\frac{π}{4}$)的值为(  )
A.-$\frac{3}{5}$B.-$\frac{4}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

分析 由周期求出ω,由条件求出cosφ的值,从而求得f($\frac{π}{4}$)的值.

解答 解:根据函数f(x)=sin(ωx+φ)(ω>0)的图象的相邻两条对称轴之间的距离等于$\frac{π}{2}$,
可得$\frac{T}{2}$=$\frac{π}{ω}$=$\frac{π}{2}$,∴ω=2.
由sinφ=$\frac{3}{5}$,且φ∈($\frac{π}{2}$,π),可得 cosφ=-$\frac{4}{5}$,
∴则f($\frac{π}{4}$)=sin($\frac{π}{2}$+φ)=cosφ=-$\frac{4}{5}$,
故选:B.

点评 本题主要考查正弦函数的周期性,同角三角函数的基本关系,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网