题目内容

已知中心在坐标原点的双曲线C与抛物线x2=2px(p>0)有相同的焦点F,点A是两曲线的交点,且AF⊥y轴,则双曲线的离心率为(  )
A、
5
+1
2
B、
2
+1
C、
3
+1
D、
2
2
+1
2
考点:抛物线的简单性质,双曲线的简单性质
专题:综合题,圆锥曲线的定义、性质与方程
分析:根据抛物线和双曲线有相同的焦点求得p和c的关系,根据AF⊥y轴可判断出|AF|的值和A的坐标,代入双曲线方程与p=2c,b2=c2-a2联立求得a和c的关系式,然后求得离心率e.
解答: 解:∵抛物线的焦点和双曲线的焦点相同,
∴p=2c
∵A是它们的一个公共点,且AF垂直y轴
设A点的横坐标大于0
∴|AF|=p,∴A(p,
p
2

∵点A在双曲线上
p2
4a2
-
p2
b2
=1
∵p=2c,b2=c2-a2
∴化简得:c4-6c2a2+a4=0
∴e4-6e2+1=0
∵e2>1
∴e2=3+2
2

∴e=1+
2

故选:B.
点评:本题主要考查关于双曲线的离心率的问题,属于中档题,本题利用焦点三角形中的边角关系,得出a、c的关系,从而求出离心率.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网