题目内容
1.在△ABC中,内角A,B,C的对边分别为a,b,c,且$\frac{b}{a}$=$\frac{\sqrt{3}cosB}{sinA}$.(Ⅰ)求角B的大小;
(Ⅱ)若b=2$\sqrt{3}$,△ABC的面积为2$\sqrt{3}$,求△ABC的周长.
分析 (1)由题意得$\frac{sinB}{sinA}=\frac{\sqrt{3}cosB}{sinA}$ 即sinB=$\sqrt{3}$cosB,tanB=$\sqrt{3}$即可得B.
(2)${s}_{△ABC}=\frac{1}{2}acsinB=\frac{\sqrt{3}}{4}ac=2\sqrt{3}$,可得ac=8,由余弦定理得b2=a2+c2-2accosB,可得a+c即可得△ABC的周长.
解答 解:(1)由题意得$\frac{sinB}{sinA}=\frac{\sqrt{3}cosB}{sinA}$ …(2分)
即sinB=$\sqrt{3}$cosB…(4分)
tanB=$\sqrt{3}$…(5分)
∵0<B<π,∴$B=\frac{π}{3}$…(6分)
(2)${s}_{△ABC}=\frac{1}{2}acsinB=\frac{\sqrt{3}}{4}ac=2\sqrt{3}$∴ac=8…(8分)
由余弦定理得b2=a2+c2-2accosB
∴12=a2+c2-ac=(a+c)2-3ac,
∴(a+c)2=36,a+c=6
∴△ABC的周长为6+2$\sqrt{3}$…(12分)
点评 本题考查了正余弦定理的应用,考查了计算能力,属于中档题
练习册系列答案
相关题目
11.函数y=cos(2x-1)的导数为( )
| A. | y'=-2sin(2x-1) | B. | y'=-2cos(2x-1) | C. | y'=-sin(2x-1) | D. | y'=-cos(2x-1) |
12.函数f(x)=asinx+blog2$\frac{1+x}{1-x}$+2(a,b为常数),若f(x)在(0,1)上有最小值为-4,则f(x)在(-1,0)上有( )
| A. | 最大值8 | B. | 最大值6 | C. | 最大值4 | D. | 最大值2 |