题目内容

9.双曲线$M:{x^2}-\frac{y^2}{b^2}=1$的左,右焦点分别为F1,F2,记|F1F2|=2c,以坐标原点O为圆心,c为半径的圆与双曲线M在第一象限的交点为P,若|PF1|=c+2,则P点的横坐标为$\frac{\sqrt{3}+1}{2}$.

分析 求得圆O的方程,联立双曲线的方程,求得P的横坐标,再由双曲线的定义,和直角三角形的勾股定理,可得c,b,化简整理可得所求横坐标的值.

解答 解:坐标原点O为圆心,c为半径的圆的方程为x2+y2=c2
由$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}={c}^{2}}\\{{x}^{2}-\frac{{y}^{2}}{{b}^{2}}=1}\end{array}\right.$,解得x2=$\frac{{c}^{2}+{b}^{2}}{{b}^{2}+1}$,
由|PF1|=c+2,
由双曲线的定义可得|PF2|=|PF1|-2a=c+2-2=c,
在直角三角形PF1F2中,可得c2+(c+2)2=4c2
解得c=1+$\sqrt{3}$,
由c2=a2+b2=1+b2,可得b2=3+2$\sqrt{3}$,
可得P的横坐标为$\sqrt{\frac{7+4\sqrt{3}}{4+2\sqrt{3}}}$=$\frac{1+\sqrt{3}}{2}$.
故答案为:$\frac{{\sqrt{3}+1}}{2}$.

点评 本题考查双曲线的定义、方程和性质,考查直径所对的圆周角为直角,以及勾股定理的运用,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网