题目内容
17.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线方程为y=$\frac{\sqrt{6}}{6}$x,则此双曲线的离心率为( )| A. | $\frac{\sqrt{42}}{6}$ | B. | $\frac{7}{6}$ | C. | $\frac{\sqrt{5}}{2}$ | D. | $\frac{5}{4}$ |
分析 求出双曲线的一条渐近线方程,由题意可得b=$\frac{\sqrt{6}}{6}$a,由a,b,c的关系和离心率公式计算即可得到所求值.
解答 解:双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线方程为y=$\frac{b}{a}$x,
由题意可得$\frac{b}{a}$=$\frac{\sqrt{6}}{6}$,
即为b=$\frac{\sqrt{6}}{6}$a,
c=$\sqrt{{a}^{2}+{b}^{2}}$=$\frac{\sqrt{42}}{6}$a,
可得e=$\frac{c}{a}$=$\frac{\sqrt{42}}{6}$.
故选:A.
点评 本题考查双曲线的离心率的求法,注意运用双曲线的渐近线方程,考查运算能力,属于基础题.
练习册系列答案
相关题目
17.已知定义在R上的偶函数f(x)的周期为4,当x∈[0,2]时,f(x)=|2x-2|,若函数g(x)=f(x)-|($\frac{1}{2}$)x-$\frac{1}{2}$|,则当x∈[-2016,2016],时,函数g(x)的零点个数是( )
| A. | 1003 | B. | 2016 | C. | 4032 | D. | 2017 |
12.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率为2,则渐近线方程为( )
| A. | y=±2x | B. | y=±$\frac{\sqrt{3}}{3}$x | C. | y=±$\sqrt{3}$x | D. | y=±$\frac{1}{2}$x |
2.关于双曲线$\frac{x^2}{16}-\frac{y^2}{4}=1$与$\frac{y^2}{16}-\frac{x^2}{4}=1$的焦距和渐近线,下列说法正确的是( )
| A. | 焦距相等,渐近线相同 | B. | 焦距相等,渐近线不相同 | ||
| C. | 焦距不相等,渐近线相同 | D. | 焦距不相等,渐近线不相同 |