题目内容

6.已知函数f(x)=ax3-5x2-bx,a,b∈R,x=3是f(x)的极值点,且f(1)=-1.
(1)求实数a,b的值;
(2)求f(x)在[2,4]上的最小值和最大值.

分析 (1)求出函数的导数,计算f(1),f′(3),求出a,b的值即可;
(2)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的最大值和最小值即可.

解答 解:(1)f′(x)=3ax2-10x-b,
f′(3)=0,即27a-30-b=0,
又f(1)=-1,
故a=1,b=-3;
(2)由(1)f(x)=x3-5x2+3x,
f′(x)=3x2-10x+3,
令f′(x)>0,解得:3<x<4,
令f′(x)<0,解得:2<x<3,
故f(x)在(2,3)递减,在(3,4)递增,
故f(x)min=f(3)=-9,f(x)max=f(4)=-4.

点评 本题考查了函数的单调性、最值问题,考查导数的应用,是一道中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网