ÌâÄ¿ÄÚÈÝ
18£®£¨¢ñ£©ÈôÔÚÒ»ÄêÖÐËæ»úȡһ¸öÔµÄÁ÷Á¿Ê¹ÓÃÇé¿ö£¬ÇóʹÓÃÁ÷Á¿²»×ã180MµÄ¸ÅÂÊ£»
£¨¢ò£©Èô´ÓÕâ12¸öÔÂÖÐËæ»úÑ¡ÔñÁ¬ÐøµÄÈý¸öÔ½øÐй۲죬Çó ËùÑ¡Èý¸öÔµÄÁ÷Á¿Ê¹ÓÃÇé¿öÖУ¬ÖмäÔµÄÁ÷Á¿Ê¹ÓÃÇé¿öµÍÓÚÁíÁ½ÔµĸÅÂÊ£»
£¨¢ó£© ÓÉÕÛÏßͼÅжϴÓÄĸöÔ¿ªÊ¼£¬Á¬ÐøËĸöÔµÄÁ÷Á¿Ê¹ÓõÄÇé¿ö·½²î×î´ó£®£¨½áÂÛ²»ÒªÇóÖ¤Ã÷£©
·ÖÎö £¨¢ñ£©ÉèÁ÷Á¿²»×ã150MΪʼþA£¬ÕâÒ»Äê¹²ÓÐ12¸öÔ£¬ÆäÖÐ1Ô£¬2Ô£¬3Ô£¬4Ô£¬9ÔÂ11Ô¹²6¸öÔÂÁ÷Á¿²»×ã180M£¬ÓÉ´ËÄÜÇó³öʹÓÃÁ÷Á¿²»×ã180MµÄ¸ÅÂÊ£®
£¨¢ò£©ÉèËùÑ¡Èý¸öÔµÄÁ÷Á¿Ê¹ÓÃÇé¿öÖУ¬ÖмäÔµÄÁ÷Á¿Ê¹ÓÃÇé¿öµÍÓÚÁíÁ½ÔÂΪʼþB£¬ÀûÓÃÁоٷ¨Çó³öÔÚÕâÒ»ÄêÖÐËæ»úÈ¡Á¬ÐøÈý¸öÔµÄʹÓÃÁ÷Á¿µÄ²»Í¬È¡·¨ºÍËùÑ¡Èý¸öÔµÄÁ÷Á¿Ê¹ÓÃÇé¿öÖУ¬ÖмäÔµÄÁ÷Á¿Ê¹ÓÃÇé¿öµÍÓÚÁíÁ½ÔµÄÇé¿öÖÖÊý£¬ÓÉ´ËÄÜÇó³ö½á¹û£®
£¨¢ó£©9Ô£¬10Ô£¬11Ô£¬12ÔÂÕâËĸöÔµÄÁ÷Á¿Ê¹ÓÃÇé¿ö·½²î×î´ó£®
½â´ð £¨±¾Ð¡Ìâ¹²13·Ö£©
½â£º£¨¢ñ£©ÉèÁ÷Á¿²»×ã150MΪʼþA£¬ÕâÒ»Äê¹²ÓÐ12¸öÔ£¬
ÆäÖÐ1Ô£¬2Ô£¬3Ô£¬4Ô£¬9ÔÂ11Ô¹²6¸öÔÂÁ÷Á¿²»×ã180M£¬¡£¨2·Ö£©
ËùÒÔ$P£¨A£©=\frac{6}{12}=\frac{1}{2}$£®¡£¨4·Ö£©
£¨¢ò£©ÉèËùÑ¡Èý¸öÔµÄÁ÷Á¿Ê¹ÓÃÇé¿öÖУ¬
ÖмäÔµÄÁ÷Á¿Ê¹ÓÃÇé¿öµÍÓÚÁíÁ½ÔÂΪʼþB£¬
ÔÚÕâÒ»ÄêÖÐËæ»úÈ¡Á¬ÐøÈý¸öÔµÄʹÓÃÁ÷Á¿£¬
ÓУ¨1£¬2£¬3 £©£¬£¨2£¬3£¬4 £©£¬£¨3£¬4£¬5 £©£¬
£¨4£¬5£¬6 £©£¬£¨5£¬6£¬7 £©£¬£¨6£¬7£¬8 £©£¬
£¨7£¬8£¬9 £©£¬£¨8£¬9£¬10 £©£¬£¨9£¬10£¬11 £©£¬
£¨10£¬11£¬12 £©£¬¹²10ÖÖÈ¡·¨£¬¡£¨6·Ö£©
ÆäÖУ¨2£¬3£¬4 £©£¬£¨6£¬7£¬8 £©£¬£¨8£¬9£¬10 £©£¬£¨10£¬11£¬12 £©4ÖÖÇé¿öÂú×ãÌõ¼þ£¬¡£¨8·Ö£©
ËùÒÔ$P£¨B£©=\frac{4}{10}=\frac{2}{5}$£®¡£¨10·Ö£©
£¨¢ó£©9Ô£¬10Ô£¬11Ô£¬12ÔÂÕâËĸöÔµÄÁ÷Á¿Ê¹ÓÃÇé¿ö·½²î×î´ó£®¡£¨13·Ö£©
µãÆÀ ±¾Ì⿼²é¸ÅÂʵÄÇ󷨣¬¿¼²é·½²îµÄ¼ÆË㣬ÊÇ»ù´¡Ì⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâÁоٷ¨µÄºÏÀíÔËÓã®
| Äϰ¶ | 77 | 92 | 84 | 86 | 74 | 76 | 81 | 71 | 85 | 87 |
| ±±°¶ | 72 | 87 | 78 | 83 | 83 | 85 | 75 | 89 | 90 | 95 |
£¨2£©¸ù¾Ý±íÖеÄÊý¾ÝÍê³É¾¥Ò¶Í¼£º
£¨3£©·Ö±ð¹À¼ÆÁ½°¶·ÖÖµµÄÖÐλÊý£¬²¢¼ÆËãËüÃÇµÄÆ½¾ùÊý£¬ÊÔ´Ó¼ÆËã½á¹û·ÖÎöÁ½°¶»·±£Çé¿ö£¬Äı߱£»¤¸üºÃ£¿
| A£® | f£¨x£©=x3 | B£® | f£¨x£©=x${\;}^{\frac{1}{2}}$ | C£® | f£¨x£©=3x | D£® | f£¨x£©=£¨$\frac{1}{2}$£©x |
| A£® | [ln2£¬ln$\frac{3}{2}$+$\frac{1}{3}$] | B£® | £¨ln2£¬ln$\frac{3}{2}$+$\frac{1}{3}$£© | C£® | £¨$\frac{2}{3}$£¬ln2] | D£® | £¨$\frac{2}{3}$£¬ln$\frac{3}{2}$+$\frac{1}{3}$] |
| A£® | 0.6 | B£® | 0.4 | C£® | 0.3 | D£® | 0.2 |