题目内容
一个物体的运动方程为s=1+t+t2,其中s的单位是米,t的单位是秒,那么物体在3秒末的瞬时速度是( )
| A、7米/秒 | B、6米/秒 |
| C、5米/秒 | D、8米/秒 |
考点:导数的几何意义
专题:导数的概念及应用
分析:求函数的导数,利用导数的物理意义即可得到结论.
解答:
解:∵s=s(t)=1+t+t2,
∴s′(t)=1+2t,
则物体在3秒末的瞬时速度s′(3)=1+2×3=7,
故选:A.
∴s′(t)=1+2t,
则物体在3秒末的瞬时速度s′(3)=1+2×3=7,
故选:A.
点评:本题主要考查导数的计算,利用导数的物理意义是解决本题的关键,比较基础.
练习册系列答案
相关题目
已知a=
(
cosx-sinx)dx,则二项式(x2+
)5展开式中第三项的系数为( )
| ∫ | π 0 |
| 3 |
| a |
| x |
| A、80 | B、-80 |
| C、-40 | D、40 |
若等比数列{an}满足2a4=a6-a5,则q=( )
| A、-1或2 | B、1或-2 |
| C、0 | D、-1或-2 |
下列函数中,既是偶函数,又是在区间(0,+∞)上单调递减的函数是( )
| A、y=2|x| |
| B、y=x3 |
| C、y=-x2+1 |
| D、y=cosx |
设t是实数,i是虚数单位,且
+
是实数,则t=( )
| t |
| 1+i |
| 1-i |
| 2 |
| A、-1 | B、1 | C、0 | D、2 |
已知非零向量
,
,
满足
+
+
=0,向量
与
的夹角为60°,且|
|=|
|=1,则向量
与
的夹角为( )
| a |
| b |
| c |
| a |
| b |
| c |
| a |
| b |
| a |
| b |
| a |
| c |
| A、30° | B、60° |
| C、120° | D、150° |
将4名学生分到三个不同的班级,在每个班级至少分到一名学生的条件下,其中甲、乙两名学生不能分到同一个班级的概率为( )
A、
| ||
B、
| ||
C、
| ||
D、
|